A simple counting argument

Matthieu Rosenfeld
November 23, 2023

Local Lemmas and others

Lovász Local Lemma

Probabilistic method (Erdős):

Probabilistic argument \Longrightarrow deterministic result

Lovász Local Lemma

Probabilistic method (Erdős):

Probabilistic argument \Longrightarrow deterministic result

Lovász Local Lemma (1975)

Let A_{1}, \ldots, A_{k} be events such that each event has probability at most p and depends on at most d other events. If

$$
e p d \leq 1
$$

then the probability that no events occur is non-zero.

Lovász Local Lemma

Probabilistic method (Erdős):

Probabilistic argument \Longrightarrow deterministic result

Lovász Local Lemma (1975)

Let A_{1}, \ldots, A_{k} be events such that each event has probability at most p and depends on at most d other events. If

$$
e p d \leq 1
$$

then the probability that no events occur is non-zero.

Theorem

Let ϕ be a k-SAT formula. If every variable belongs to at most $\frac{2^{k}}{k e}$ clauses then ϕ is satisfiable.
... Entropy compression, local-cut Lemma, Counting argument

Theorem (Moser et Tardos, 2010, Gödel prize 2020)
Under LLL assumptions, there is a randomized algorithm that finds a satisfying assignment in expected polynomial time.
\Longrightarrow Entropy Compression

Theorem (Moser et Tardos, 2010, Gödel prize 2020)
Under LLL assumptions, there is a randomized algorithm that finds a satisfying assignment in expected polynomial time.
\Longrightarrow Entropy Compression
\Longrightarrow improvement of many bounds previously obtained by the LLL (SAT, graph or hypergraph colorings, combinatorics on words...)

Theorem (Moser et Tardos, 2010, Gödel prize 2020)

Under LLL assumptions, there is a randomized algorithm that finds a satisfying assignment in expected polynomial time.
\Longrightarrow Entropy Compression
\Longrightarrow improvement of many bounds previously obtained by the LLL (SAT, graph or hypergraph colorings, combinatorics on words...)

Other techniques: Local-cut Lemma, Cluster-expansion (from statistical physics)...

Theorem (Moser et Tardos, 2010, Gödel prize 2020)

Under LLL assumptions, there is a randomized algorithm that finds a satisfying assignment in expected polynomial time.
\Longrightarrow Entropy Compression
\Longrightarrow improvement of many bounds previously obtained by the LLL (SAT, graph or hypergraph colorings, combinatorics on words...)

Other techniques: Local-cut Lemma, Cluster-expansion (from statistical physics)...
[Rosenfeld, 2020] Counting argument: this talk

A first example:

 proper hypergraph colorings
Hypergraph colorings: Definition and Theorem

A coloring of the vertices of H is proper if no edge is monochromatic.

Hypergraph colorings: Definition and Theorem

A coloring of the vertices of H is proper if no edge is monochromatic.

Hypergraph colorings: Definition and Theorem

A coloring of the vertices of H is proper if no edge is monochromatic.

Hypergraph colorings: Definition and Theorem

A coloring of the vertices of H is proper if no edge is monochromatic.

Hypergraph colorings: Definition and Theorem

A coloring of the vertices of H is proper if no edge is monochromatic.

The chromatic number $\chi(H)$ is the minimum of colors in a proper coloring of H .

Hypergraph colorings: Definition and Theorem

A coloring of the vertices of H is proper if no edge is monochromatic.

The chromatic number $\chi(H)$ is the minimum of colors in a proper coloring of H.

The degree of a vertex v is the number of edges that contain v.

Hypergraph colorings: Definition and Theorem

A coloring of the vertices of H is proper if no edge is monochromatic.

The chromatic number $\chi(H)$ is the minimum of colors in a proper coloring of H.

The degree of a vertex v is the number of edges that contain v.
An hypergraph if r-regular if every edge is of size r.

Hypergraph colorings: a result

Intuitively: smaller degree or larger edges \Longrightarrow easier to color

Hypergraph colorings: a result

Intuitively: smaller degree or larger edges \Longrightarrow easier to color

Theorem

Let $\beta \geq 1$. Let H be a r-uniform hypergraph of maximum degree Δ,

$$
\chi(H) \leq\left\lceil\beta+\frac{\Delta}{\beta^{r-2}}\right\rceil .
$$

Hypergraph colorings: a result

Intuitively: smaller degree or larger edges \Longrightarrow easier to color

Theorem

Let $\beta \geq 1$. Let H be a r-uniform hypergraph of maximum degree Δ,

$$
\chi(H) \leq\left\lceil\beta+\frac{\Delta}{\beta^{r-2}}\right\rceil .
$$

Let $c=\left\lceil\beta+\frac{\Delta}{\beta^{r-2}}\right\rceil$ and $\mathcal{C}(H)$ be \# proper c-coloring of H.

Hypergraph colorings: a result

Intuitively: smaller degree or larger edges \Longrightarrow easier to color

Theorem

Let $\beta \geq 1$. Let H be a r-uniform hypergraph of maximum degree Δ,

$$
\chi(H) \leq\left\lceil\beta+\frac{\Delta}{\beta^{r-2}}\right\rceil .
$$

Let $c=\left\lceil\beta+\frac{\Delta}{\beta^{r-2}}\right\rceil$ and $\mathcal{C}(H)$ be \# proper c-coloring of H.

Lemma

Let H be a r-uniform hypergraph of maximum degree Δ, then

$$
\forall v \in V(H), \quad \mathcal{C}(H) \geq \beta \mathcal{C}(H-v) .
$$

Hypergraph colorings: a result

Intuitively: smaller degree or larger edges \Longrightarrow easier to color

Theorem

Let $\beta \geq 1$. Let H be a r-uniform hypergraph of maximum degree Δ,

$$
\chi(H) \leq\left\lceil\beta+\frac{\Delta}{\beta^{r-2}}\right\rceil .
$$

Let $c=\left\lceil\beta+\frac{\Delta}{\beta^{r-2}}\right\rceil$ and $\mathcal{C}(H)$ be \# proper c-coloring of H.

Lemma

Let H be a r-uniform hypergraph of maximum degree Δ, then

$$
\forall v \in V(H), \quad \mathcal{C}(H) \geq \beta \mathcal{C}(H-v) .
$$

Proof of the Theorem: By induction, $\mathcal{C}(H) \geq \beta^{|H|}$

Proof by induction that $\forall v \in V(H), \quad \mathcal{C}(H) \geq \beta \mathcal{C}(H-v)$.

Proof by induction that $\forall v \in V(H), \quad \mathcal{C}(H) \geq \beta \mathcal{C}(H-v)$.

Induction hypothesis implies: $\quad \forall S \subseteq V(H-v), \quad \mathcal{C}(H-v-S) \leq \frac{\mathcal{C}(H-v)}{\beta^{|S|}}$

Proof by induction that $\forall v \in V(H), \quad \mathcal{C}(H) \geq \beta C(H-v)$.

Induction hypothesis implies: $\quad \forall S \subseteq V(H-v), \quad \mathcal{C}(H-v-S) \leq \frac{\mathcal{C}(H-v)}{\beta^{|S|}}$
A coloring of $V(H)$ is bad, if it is proper on $H-v$, but not on H.

Proof by induction that $\forall v \in V(H), \quad \mathcal{C}(H) \geq \beta \mathcal{C}(H-v)$.

Induction hypothesis implies: $\quad \forall S \subseteq V(H-v), \quad \mathcal{C}(H-v-S) \leq \frac{\mathcal{C}(H-v)}{\beta^{|S|}}$
A coloring of $V(H)$ is bad, if it is proper on $H-v$, but not on H.

$$
\mathcal{C}(H) \geq c \cdot \mathcal{C}(H-v)-\#\{\text { bad colorings }\}
$$

Proof by induction that $\forall v \in V(H), \quad \mathcal{C}(H) \geq \beta \mathcal{C}(H-v)$.

Induction hypothesis implies: $\quad \forall S \subseteq V(H-v), \quad \mathcal{C}(H-v-S) \leq \frac{\mathcal{C}(H-v)}{\beta^{|S|}}$
A coloring of $V(H)$ is bad, if it is proper on $H-v$, but not on H.

$$
\mathcal{C}(H) \geq c \cdot \mathcal{C}(H-v)-\#\{\text { bad colorings }\}
$$

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.

Proof by induction that $\forall v \in V(H), \quad \mathcal{C}(H) \geq \beta \mathcal{C}(H-v)$.

Induction hypothesis implies: $\forall S \subseteq V(H-v), \quad \mathcal{C}(H-v-S) \leq \frac{\mathcal{C}(H-v)}{\beta^{|S|}}$
A coloring of $V(H)$ is bad, if it is proper on $H-v$, but not on H.

$$
\mathcal{C}(H) \geq c \cdot \mathcal{C}(H-v)-\#\{\text { bad colorings }\}
$$

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.
$\#\{$ bad colorings $\} \leq \sum_{e \sim v} \#\{e$-bad colorings $\}$

Proof by induction that $\forall v \in V(H), \quad \mathcal{C}(H) \geq \beta \mathcal{C}(H-v)$.

Induction hypothesis implies: $\quad \forall S \subseteq V(H-v), \quad \mathcal{C}(H-v-S) \leq \frac{\mathcal{C}(H-v)}{\beta^{|S|}}$
A coloring of $V(H)$ is bad, if it is proper on $H-v$, but not on H.

$$
\mathcal{C}(H) \geq c \cdot \mathcal{C}(H-v)-\#\{\text { bad colorings }\}
$$

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.
$\#\{$ bad colorings $\} \leq \sum_{e \sim v} \#\{e$-bad colorings $\}$
Let $w \in \boldsymbol{e} \backslash v$, then

Proof by induction that $\forall v \in V(H), \quad \mathcal{C}(H) \geq \beta \mathcal{C}(H-v)$.

Induction hypothesis implies: $\quad \forall S \subseteq V(H-v), \quad \mathcal{C}(H-v-S) \leq \frac{\mathcal{C}(H-v)}{\beta^{|S|}}$
A coloring of $V(H)$ is bad, if it is proper on $H-v$, but not on H.

$$
\mathcal{C}(H) \geq c \cdot \mathcal{C}(H-v)-\#\{\text { bad colorings }\}
$$

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.
$\#\{$ bad colorings $\} \leq \sum_{e \sim v} \#\{e$-bad colorings $\}$
Let $w \in \boldsymbol{e} \backslash v$, then

Proof by induction that $\forall v \in V(H), \quad \mathcal{C}(H) \geq \beta \mathcal{C}(H-v)$.

Induction hypothesis implies: $\quad \forall S \subseteq V(H-v), \quad \mathcal{C}(H-v-S) \leq \frac{\mathcal{C}(H-v)}{\beta^{|S|}}$
A coloring of $V(H)$ is bad, if it is proper on $H-v$, but not on H.

$$
\mathcal{C}(H) \geq c \cdot \mathcal{C}(H-v)-\#\{\text { bad colorings }\}
$$

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.
$\#\{$ bad colorings $\} \leq \sum_{e \sim v} \#\{e$-bad colorings $\}$
Let $w \in e \backslash v$, then
$\#\{e$-bad colorings $\} \leq \mathcal{C}(H-(e \backslash w))$

Proof by induction that $\forall v \in V(H), \quad \mathcal{C}(H) \geq \beta \mathcal{C}(H-v)$.

Induction hypothesis implies: $\quad \forall S \subseteq V(H-v), \quad C(H-v-S) \leq \frac{\mathcal{C}(H-v)}{\beta^{|S|}}$
A coloring of $V(H)$ is bad, if it is proper on $H-v$, but not on H.

$$
\mathcal{C}(H) \geq c \cdot \mathcal{C}(H-v)-\#\{\text { bad colorings }\}
$$

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.
$\#\{$ bad colorings $\} \leq \sum_{e \sim v} \#\{e$-bad colorings $\}$
Let $w \in \boldsymbol{e} \backslash v$, then
$\#\{e$-bad colorings $\} \leq \mathcal{C}(H-(e \backslash w)) \leq \frac{\mathcal{C}(H-v)}{\beta^{r-2}}$

Proof by induction that $\forall v \in V(H), \quad \mathcal{C}(H) \geq \beta \mathcal{C}(H-v)$.

Induction hypothesis implies: $\quad \forall S \subseteq V(H-v), \quad \mathcal{C}(H-v-S) \leq \frac{\mathcal{C}(H-v)}{\beta^{S \mid}}$
A coloring of $V(H)$ is bad, if it is proper on $H-v$, but not on H.

$$
\mathcal{C}(H) \geq c \cdot \mathcal{C}(H-v)-\#\{\text { bad colorings }\}
$$

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.
$\#\{$ bad colorings $\} \leq \sum_{e \sim v} \#\{e$-bad colorings $\} \leq \Delta \frac{\mathcal{C}(H-v)}{\beta^{r-2}}$
Let $w \in \boldsymbol{e} \backslash v$, then
$\#\{e$-bad colorings $\} \leq \mathcal{C}(H-(e \backslash w)) \leq \frac{\mathcal{C}(H-v)}{\beta^{r-2}}$

Proof by induction that $\forall v \in V(H), \quad \mathcal{C}(H) \geq \beta \mathcal{C}(H-v)$.

Induction hypothesis implies: $\quad \forall S \subseteq V(H-v), \quad \mathcal{C}(H-v-S) \leq \frac{\mathcal{C}(H-v)}{\beta^{S \mid}}$
A coloring of $V(H)$ is bad, if it is proper on $H-v$, but not on H.

$$
\mathcal{C}(H) \geq C \cdot \mathcal{C}(H-v)-\#\{\text { bad colorings }\} \geq C \cdot \mathcal{C}(H-v)-\Delta \frac{\mathcal{C}(H-v)}{\beta^{r-2}}
$$

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.
$\#\{$ bad colorings $\} \leq \sum_{e \sim v} \#\{e$-bad colorings $\} \leq \Delta \frac{\mathcal{C}(H-v)}{\beta^{r-2}}$
Let $w \in e \backslash v$, then
$\#\{e$-bad colorings $\} \leq \mathcal{C}(H-(e \backslash w)) \leq \frac{\mathcal{C}(H-v)}{\beta^{r-2}}$

Proof by induction that $\forall v \in V(H), \quad \mathcal{C}(H) \geq \beta \mathcal{C}(H-v)$.

Induction hypothesis implies: $\quad \forall S \subseteq V(H-v), \quad \mathcal{C}(H-v-S) \leq \frac{\mathcal{C}(H-v)}{\beta^{S \mid}}$
A coloring of $V(H)$ is bad, if it is proper on $H-v$, but not on H.

$$
\mathcal{C}(H) \geq c \cdot \mathcal{C}(H-v)-\#\{\text { bad colorings }\} \geq c \cdot \mathcal{C}(H-v)-\Delta \frac{\mathcal{C}(H-v)}{\beta^{r-2}}
$$

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.
$\#\{$ bad colorings $\} \leq \sum_{e \sim v} \#\{e$-bad colorings $\} \leq \Delta \frac{\mathcal{C}(H-v)}{\beta^{r-2}}$
Let $w \in e \backslash v$, then
$\#\{e$-bad colorings $\} \leq \mathcal{C}(H-(e \backslash w)) \leq \frac{\mathcal{C}(H-v)}{\beta^{r-2}}$

Finally, $\quad \mathcal{C}(H) \geq\left(c-\frac{\Delta}{\beta^{r-2}}\right) \mathcal{C}(H-v)$

Proof by induction that $\forall v \in V(H), \quad \mathcal{C}(H) \geq \beta \mathcal{C}(H-v)$.

Induction hypothesis implies: $\quad \forall S \subseteq V(H-v), \quad \mathcal{C}(H-v-S) \leq \frac{\mathcal{C}(H-v)}{\beta^{S \mid}}$
A coloring of $V(H)$ is bad, if it is proper on $H-v$, but not on H.

$$
\mathcal{C}(H) \geq c \cdot \mathcal{C}(H-v)-\#\{\text { bad colorings }\} \geq c \cdot \mathcal{C}(H-v)-\Delta \frac{\mathcal{C}(H-v)}{\beta^{r-2}}
$$

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.
$\#\{$ bad colorings $\} \leq \sum_{e \sim v} \#\{e$-bad colorings $\} \leq \Delta \frac{\mathcal{C}(H-v)}{\beta^{r-2}}$
Let $w \in e \backslash v$, then
$\#\{e$-bad colorings $\} \leq \mathcal{C}(H-(e \backslash w)) \leq \frac{\mathcal{C}(H-v)}{\beta^{r-2}}$

Back to the Theorem

Lemma

Let H be an r-regular hypergraph of maximum degree Δ. Then

$$
\chi(H) \leq c:=\min _{\beta>0}\left\lceil\beta+\frac{\Delta}{\beta^{r-2}}\right\rceil .
$$

Back to the Theorem

Lemma

Let H be an r-regular hypergraph of maximum degree Δ. Then

$$
\chi(H) \leq c:=\min _{\beta>0}\left\lceil\beta+\frac{\Delta}{\beta^{r-2}}\right\rceil .
$$

Moreover, the number of proper c-coloring of H is at least $\beta^{|V(H)|}$.

Back to the Theorem

Lemma

Let H be an r-regular hypergraph of maximum degree Δ. Then

$$
\chi(H) \leq c:=\min _{\beta>0}\left\lceil\beta+\frac{\Delta}{\beta^{r-2}}\right\rceil .
$$

Moreover, the number of proper c-coloring of H is at least $\beta^{|V(H)|}$.

Theorem (Wanless and Wood, 2020)

Let $r>2$. Let H be a r-uniform hypergraph of maximum degree Δ,

$$
\chi(H) \leq\left\lceil\left(\frac{r-1}{r-2}\right)((r-2) \Delta)^{1 /(r-1)}\right\rceil .
$$

Asymptotically optimal. Slightly better than [Erdős and Lovász, 1975]

Back to the Theorem

Lemma

Let H be an r-regular hypergraph of maximum degree Δ. Then

$$
\chi(H) \leq c:=\min _{\beta>0}\left\lceil\beta+\frac{\Delta}{\beta^{r-2}}\right\rceil .
$$

Moreover, the number of proper c-coloring of H is at least $\beta^{|V(H)|}$.

Theorem (Wanless and Wood, 2020)

Let $r>2$. Let H be a r-uniform hypergraph of maximum degree Δ,

$$
\chi(H) \leq\left\lceil\left(\frac{r-1}{r-2}\right)((r-2) \Delta)^{1 /(r-1)}\right\rceil .
$$

Asymptotically optimal. Slightly better than [Erdős and Lovász, 1975]
Remark: For the chromatic number of graphs (2-regular hypergraph), we have $c=\Delta+1$.

A second example: Star coloring

Star coloring: definition

A star coloring of a graph G is a proper coloring such that any pair of color classes induces a forest of stars.

Star coloring: definition

A star coloring of a graph G is a proper coloring such that any pair of color classes induces a forest of stars.

Equivalently: A star coloring of a graph G is a proper coloring such that no p_{4} is bi-chromatic.

Star coloring: definition

A star coloring of a graph G is a proper coloring such that any pair of color classes induces a forest of stars.

Equivalently: A star coloring of a graph G is a proper coloring such that no p_{4} is bi-chromatic.

Star coloring: definition

A star coloring of a graph G is a proper coloring such that any pair of color classes induces a forest of stars.

Equivalently: A star coloring of a graph G is a proper coloring such that no p_{4} is bi-chromatic.

Star coloring: definition

A star coloring of a graph G is a proper coloring such that any pair of color classes induces a forest of stars.

Equivalently: A star coloring of a graph G is a proper coloring such that no p_{4} is bi-chromatic.

Star coloring: definition

A star coloring of a graph G is a proper coloring such that any pair of color classes induces a forest of stars.

Equivalently: A star coloring of a graph G is a proper coloring such that no p_{4} is bi-chromatic.

Star coloring: definition

A star coloring of a graph G is a proper coloring such that any pair of color classes induces a forest of stars.

Equivalently: A star coloring of a graph G is a proper coloring such that no p_{4} is bi-chromatic.

$\chi_{s}(G)$ is the minimum number of colors in a star coloring of G

Star coloring: results

For all graph G of maximum degree Δ,
Theorem (Fertin, Raspaud, and Reed, 2004)

$$
\chi_{s}(G) \leq 20 \Delta^{3 / 2}
$$

Star coloring: results

For all graph G of maximum degree Δ,
Theorem (Fertin, Raspaud, and Reed, 2004)

$$
\chi_{s}(G) \leq 20 \Delta^{3 / 2}
$$

Theorem (Ndreca, Procacci, and Scoppola, 2012)

$$
\chi_{s}(G) \leq 4.34 \Delta^{3 / 2}+1.5 \Delta
$$

Star coloring: results

For all graph G of maximum degree Δ,
Theorem (Fertin, Raspaud, and Reed, 2004)

$$
\chi_{s}(G) \leq 20 \Delta^{3 / 2}
$$

Theorem (Ndreca, Procacci, and Scoppola, 2012)

$$
\chi_{s}(G) \leq 4.34 \Delta^{3 / 2}+1.5 \Delta
$$

Theorem (Esperet, and Parreau, 2013)

$$
\chi_{S}(G) \leq\left\lceil 2 \sqrt{2} \Delta^{3 / 2}+\Delta\right\rceil
$$

Star coloring: results

For all graph G of maximum degree Δ,
Theorem (Fertin, Raspaud, and Reed, 2004 LLL)

$$
\chi_{s}(G) \leq 20 \Delta^{3 / 2}
$$

Theorem (Ndreca, Procacci, and Scoppola, 2012 LLL)

$$
\chi_{s}(G) \leq 4.34 \Delta^{3 / 2}+1.5 \Delta
$$

Theorem (Esperet, and Parreau, 2013 Entropy Compression)

$$
\chi_{S}(G) \leq\left\lceil 2 \sqrt{2} \Delta^{3 / 2}+\Delta\right\rceil
$$

A usefull lemma

Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$, the number of p_{4} that contains v is at most,

$$
\mid\left\{p \mid p \text { is a } p_{4}, v \in p\right\} \mid \leq 2 \Delta^{3} .
$$

A usefull lemma

Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$, the number of p_{4} that contains v is at most,

$$
\mid\left\{p \mid p \text { is a } p_{4}, v \in p\right\} \mid \leq 2 \Delta^{3} .
$$

A usefull lemma

Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$, the number of p_{4} that contains v is at most,

$$
\mid\left\{p \mid p \text { is a } p_{4}, v \in p\right\} \mid \leq 2 \Delta^{3} .
$$

A usefull lemma

Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$, the number of p_{4} that contains v is at most,

$$
\mid\left\{p \mid p \text { is a } p_{4}, v \in p\right\} \mid \leq 2 \Delta^{3} .
$$

A usefull lemma

Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$, the number of p_{4} that contains v is at most,

$$
\mid\left\{p \mid p \text { is a } p_{4}, v \in p\right\} \mid \leq 2 \Delta^{3} .
$$

A usefull lemma

Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$, the number of p_{4} that contains v is at most,

$$
\mid\left\{p \mid p \text { is a } p_{4}, v \in p\right\} \mid \leq 2 \Delta^{3} .
$$

In total: $\leq \Delta^{3}$ choices

A usefull lemma

Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$, the number of p_{4} that contains v is at most,

$$
\mid\left\{p \mid p \text { is a } p_{4}, v \in p\right\} \mid \leq 2 \Delta^{3} .
$$

In total: $\leq \Delta^{3}$ choices

A usefull lemma

Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$, the number of p_{4} that contains v is at most,

$$
\mid\left\{p \mid p \text { is a } p_{4}, v \in p\right\} \mid \leq 2 \Delta^{3} .
$$

In total: $\leq \Delta^{3}$ choices

A usefull lemma

Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$, the number of p_{4} that contains v is at most,

$$
\mid\left\{p \mid p \text { is a } p_{4}, v \in p\right\} \mid \leq 2 \Delta^{3} .
$$

In total: $\leq \Delta^{3}$ choices

A usefull lemma

Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$, the number of p_{4} that contains v is at most,

$$
\mid\left\{p \mid p \text { is a } p_{4}, v \in p\right\} \mid \leq 2 \Delta^{3} .
$$

In total: $\leq \Delta^{3}$ choices

In total: $\leq \Delta^{3}$ choices

A usefull lemma

Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$, the number of p_{4} that contains v is at most,

$$
\mid\left\{p \mid p \text { is a } p_{4}, v \in p\right\} \mid \leq 2 \Delta^{3} .
$$

In total: $\leq \Delta^{3}$ choices

In total: $\leq \Delta^{3}$ choices

Star coloring: with the counting argument

Theorem (This talk)

$$
\chi_{s}(G) \leq\left\lceil 2 \sqrt{2} \Delta^{3 / 2}+\Delta\right\rceil
$$

Star coloring: with the counting argument

Theorem (This talk)

$$
\chi_{s}(G) \leq\left\lceil 2 \sqrt{2} \Delta^{3 / 2}+\Delta\right\rceil
$$

Let $c=\left\lceil 2 \sqrt{2} \Delta^{3 / 2}+\Delta\right\rceil$.
We let $\mathcal{C}_{s}(G)$ be the number of star c-colorings of G.
Let β such that $c-\Delta-\frac{2 \Delta^{3}}{\beta} \geq \beta$.

Star coloring: with the counting argument

Theorem (This talk)

$$
\chi_{s}(G) \leq\left\lceil 2 \sqrt{2} \Delta^{3 / 2}+\Delta\right\rceil
$$

Let $c=\left\lceil 2 \sqrt{2} \Delta^{3 / 2}+\Delta\right\rceil$.
We let $\mathcal{C}_{s}(G)$ be the number of star c-colorings of G.
Let β such that $c-\Delta-\frac{2 \Delta^{3}}{\beta} \geq \beta$.
Theorem is a corollary of:

Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$,

$$
\mathcal{C}_{s}(G) \geq \beta \mathcal{C}_{s}(G-v) .
$$

Proof by induction that $\forall v \in V(G), \quad \mathcal{C}_{s}(G) \geq \beta \mathcal{C}_{s}(G-v)$

Proof by induction that $\forall v \in V(G), \quad \mathcal{C}_{s}(G) \geq \beta \mathcal{C}_{s}(G-v)$

Induction hypothesis implies: $\quad \forall u \in V(G-v), \quad \mathcal{C}_{s}(G-v-u) \leq \frac{\mathcal{C}_{s}(G-v)}{\beta}$

Proof by induction that $\forall v \in V(G), \quad \mathcal{C}_{s}(G) \geq \beta \mathcal{C}_{s}(G-v)$

Induction hypothesis implies: $\forall u \in V(G-v), \quad \mathcal{C}_{s}(G-v-u) \leq \frac{\mathcal{C}_{s}(G-v)}{\beta}$
A proper-coloring of $V(G)$ is bad, if the restriction to $V(G-v)$ is a star coloring, but not the restriction to $V(G)$.

Proof by induction that $\forall v \in V(G), \quad \mathcal{C}_{s}(G) \geq \beta \mathcal{C}_{s}(G-v)$

Induction hypothesis implies: $\forall u \in V(G-v), \quad \mathcal{C}_{s}(G-v-u) \leq \frac{\mathcal{C}_{s}(G-v)}{\beta}$
A proper-coloring of $V(G)$ is bad, if the restriction to $V(G-v)$ is a star coloring, but not the restriction to $V(G)$.
$\mathcal{C}_{s}(G) \geq(c-\Delta) \cdot \mathcal{C}_{s}(G-v)-\#\{$ bad col. $\}$

Proof by induction that $\forall v \in V(G), \quad \mathcal{C}_{s}(G) \geq \beta \mathcal{C}_{s}(G-v)$

Induction hypothesis implies: $\quad \forall u \in V(G-v), \quad \mathcal{C}_{s}(G-v-u) \leq \frac{\mathcal{C}_{s}(G-v)}{\beta}$
A proper-coloring of $V(G)$ is bad, if the restriction to $V(G-v)$ is a star coloring, but not the restriction to $V(G)$.
$\mathcal{C}_{s}(G) \geq(c-\Delta) \cdot \mathcal{C}_{s}(G-v)-\#\{$ bad col. $\}$
For all path p of length 4 with $v \in p$, a bad coloring of $V(G)$ is p-bad, if p is bichromatic.

Proof by induction that $\forall v \in V(G), \quad \mathcal{C}_{s}(G) \geq \beta \mathcal{C}_{s}(G-v)$

Induction hypothesis implies: $\forall u \in V(G-v), \quad \mathcal{C}_{s}(G-v-u) \leq \frac{\mathcal{C}_{s}(G-v)}{\beta}$
A proper-coloring of $V(G)$ is bad, if the restriction to $V(G-v)$ is a star coloring, but not the restriction to $V(G)$.
$\mathcal{C}_{s}(G) \geq(c-\Delta) \cdot \mathcal{C}_{s}(G-v)-\#\{$ bad col. $\}$
For all path p of length 4 with $v \in p$, a bad coloring of $V(G)$ is p-bad, if p is bichromatic.
$\mid\{$ bad col. $\}\left|\leq \sum_{\substack{p \in \mathcal{P}_{h} \\ v \in p}}\right|\{p$-bad col. $\} \mid$

Proof by induction that $\forall v \in V(G), \quad \mathcal{C}_{s}(G) \geq \beta \mathcal{C}_{s}(G-v)$

Induction hypothesis implies: $\forall u \in V(G-v), \quad \mathcal{C}_{s}(G-v-u) \leq \frac{\mathcal{C}_{s}(G-v)}{\beta}$
A proper-coloring of $V(G)$ is bad, if the restriction to $V(G-v)$ is a star coloring, but not the restriction to $V(G)$.
$\mathcal{C}_{s}(G) \geq(c-\Delta) \cdot \mathcal{C}_{s}(G-v)-\#\{$ bad col. $\}$
For all path p of length 4 with $v \in p$, a bad coloring of $V(G)$ is p-bad, if p is bichromatic.
$\mid\{$ bad col. $\}\left|\leq \sum_{\substack{p \in P_{4} \\ v \in p^{4}}}\right|\{p$-bad col. $\} \mid$
Let $u \in N(v) \cap p$, then

Proof by induction that $\forall v \in V(G), \quad \mathcal{C}_{s}(G) \geq \beta \mathcal{C}_{s}(G-v)$

Induction hypothesis implies: $\forall u \in V(G-v), \quad \mathcal{C}_{s}(G-v-u) \leq \frac{\mathcal{C}_{s}(G-v)}{\beta}$
A proper-coloring of $V(G)$ is bad, if the restriction to $V(G-v)$ is a star coloring, but not the restriction to $V(G)$.
$\mathcal{C}_{s}(G) \geq(c-\Delta) \cdot \mathcal{C}_{s}(G-v)-\#\{$ bad col. $\}$
For all path p of length 4 with $v \in p$, a bad coloring of $V(G)$ is p-bad, if p is bichromatic.
$\mid\{$ bad col. $\}\left|\leq \sum_{\substack{p \in P_{4} \\ v \in p^{4}}}\right|\{p$-bad col. $\} \mid$
Let $u \in N(v) \cap p$, then

Proof by induction that $\forall v \in V(G), \quad \mathcal{C}_{s}(G) \geq \beta \mathcal{C}_{s}(G-v)$

Induction hypothesis implies: $\forall u \in V(G-v), \quad \mathcal{C}_{s}(G-v-u) \leq \frac{\mathcal{C}_{s}(G-v)}{\beta}$
A proper-coloring of $V(G)$ is bad, if the restriction to $V(G-v)$ is a star coloring, but not the restriction to $V(G)$.
$\mathcal{C}_{s}(G) \geq(c-\Delta) \cdot \mathcal{C}_{s}(G-v)-\#\{$ bad col. $\}$
For all path p of length 4 with $v \in p$, a bad coloring of $V(G)$ is p-bad, if p is bichromatic.
$\mid\{$ bad col. $\}\left|\leq \sum_{\substack{p \in P_{4} \\ v \in p^{4}}}\right|\{p$-bad col. $\} \mid$
Let $u \in N(v) \cap p$, then

$$
\mid\{p-\text { bad col. }\} \mid \leq \mathcal{C}_{s}(G-v-u)
$$

Proof by induction that $\forall v \in V(G), \quad \mathcal{C}_{s}(G) \geq \beta \mathcal{C}_{s}(G-v)$

Induction hypothesis implies: $\quad \forall u \in V(G-v), \quad \mathcal{C}_{s}(G-v-u) \leq \frac{\mathcal{C}_{s}(G-v)}{\beta}$
A proper-coloring of $V(G)$ is bad, if the restriction to $V(G-v)$ is a star coloring, but not the restriction to $V(G)$.
$\mathcal{C}_{s}(G) \geq(c-\Delta) \cdot \mathcal{C}_{s}(G-v)-\#\{$ bad col. $\}$
For all path p of length 4 with $v \in p$, a bad coloring of $V(G)$ is p-bad, if p is bichromatic.
$\mid\{$ bad col. $\}\left|\leq \sum_{\substack{p \in P_{4} \\ v \in p^{4}}}\right|\{p$-bad col. $\} \mid$
Let $u \in N(v) \cap p$, then

$$
\mid\{p-\text { bad col. }\} \left\lvert\, \leq \mathcal{C}_{s}(G-v-u) \leq \frac{\mathcal{C}_{s}(G-v)}{\beta}\right.
$$

Proof by induction that $\forall v \in V(G), \quad \mathcal{C}_{s}(G) \geq \beta \mathcal{C}_{s}(G-v)$

Induction hypothesis implies: $\forall u \in V(G-v), \quad \mathcal{C}_{s}(G-v-u) \leq \frac{\mathcal{C}_{s}(G-v)}{\beta}$
A proper-coloring of $V(G)$ is bad, if the restriction to $V(G-v)$ is a star coloring, but not the restriction to $V(G)$.
$\mathcal{C}_{s}(G) \geq(c-\Delta) \cdot \mathcal{C}_{s}(G-v)-\#\{$ bad col. $\}$
For all path p of length 4 with $v \in p$, a bad coloring of $V(G)$ is p-bad, if p is bichromatic.
$\mid\{$ bad col. $\}\left|\leq \sum_{\substack{p \in P_{4} \\ v \in p^{4}}}\right|\{p$-bad col. $\} \left\lvert\, \leq 2 \Delta^{3} \frac{\mathcal{C}_{5}(G-v)}{\beta}\right.$
Let $u \in N(v) \cap p$, then

$$
\mid\{p-\text { bad col. }\} \left\lvert\, \leq \mathcal{C}_{s}(G-v-u) \leq \frac{\mathcal{C}_{s}(G-v)}{\beta}\right.
$$

Proof by induction that $\forall v \in V(G), \quad \mathcal{C}_{s}(G) \geq \beta \mathcal{C}_{s}(G-v)$

Induction hypothesis implies: $\forall u \in v(G-v), \quad \mathcal{C}_{s}(G-v-u) \leq \frac{\mathcal{C}_{s}(G-v)}{\beta}$
A proper-coloring of $V(G)$ is bad, if the restriction to $V(G-v)$ is a star coloring, but not the restriction to $V(G)$.
$\mathcal{C}_{s}(G) \geq(c-\Delta) \cdot \mathcal{C}_{S}(G-v)-\#\{$ bad col. $\} \geq c \cdot \mathcal{C}_{S}(G-v)-2 \Delta^{3} \frac{\mathcal{C}_{s}(G-v)}{\beta}$
For all path p of length 4 with $v \in p$, a bad coloring of $V(G)$ is p-bad, if p is bichromatic.
$\mid\{$ bad col. $\}\left|\leq \sum_{\substack{p \in P_{4} \\ v \in p^{4}}}\right|\{p$-bad col. $\} \left\lvert\, \leq 2 \Delta^{3} \frac{\mathcal{C}_{5}(G-v)}{\beta}\right.$
Let $u \in N(v) \cap p$, then

$$
\mid\{p-\text { bad col. }\} \left\lvert\, \leq \mathcal{C}_{s}(G-v-u) \leq \frac{\mathcal{C}_{s}(G-v)}{\beta}\right.
$$

Proof by induction that $\forall v \in V(G), \quad \mathcal{C}_{s}(G) \geq \beta \mathcal{C}_{s}(G-v)$

Induction hypothesis implies: $\forall u \in V(G-v), \quad \mathcal{C}_{s}(G-v-u) \leq \frac{\mathcal{C}_{s}(G-v)}{\beta}$
A proper-coloring of $V(G)$ is bad, if the restriction to $V(G-v)$ is a star coloring, but not the restriction to $V(G)$.
$\mathcal{C}_{S}(G) \geq(c-\Delta) \cdot \mathcal{C}_{s}(G-v)-\#\{$ bad col. $\} \geq c \cdot \mathcal{C}_{s}(G-v)-2 \Delta^{3} \frac{\mathcal{C}_{s}(G-v)}{\beta}$
For all path p of length 4 with $v \in p$, a bad coloring of $V(G)$ is p-bad, if p is bichromatic.
$\mid\{$ bad col. $\}\left|\leq \sum_{\substack{p \in P_{4} \\ v \in P^{4}}}\right|\{p-$ bad col. $\} \left\lvert\, \leq 2 \Delta^{3} \frac{\mathcal{C}_{5}(G-v)}{\beta}\right.$
Let $u \in N(v) \cap p$, then

$$
\mid\{p \text {-bad col. }\} \left\lvert\, \leq \mathcal{C}_{S}(G-v-u) \leq \frac{\mathcal{C}_{s}(G-v)}{\beta}\right.
$$

Finally, $\quad \mathcal{C}_{s}(G) \geq\left(c-\Delta-\frac{2 \Delta^{3}}{\beta}\right) \mathcal{C}_{s}(G-v)$

Proof by induction that $\forall v \in V(G), \quad \mathcal{C}_{s}(G) \geq \beta \mathcal{C}_{s}(G-v)$

Induction hypothesis implies: $\forall u \in V(G-v), \quad \mathcal{C}_{s}(G-v-u) \leq \frac{\mathcal{C}_{s}(G-v)}{\beta}$
A proper-coloring of $V(G)$ is bad, if the restriction to $V(G-v)$ is a star coloring, but not the restriction to $V(G)$.
$\mathcal{C}_{s}(G) \geq(c-\Delta) \cdot \mathcal{C}_{s}(G-v)-\#\{$ bad col. $\} \geq c \cdot \mathcal{C}_{s}(G-v)-2 \Delta^{3} \frac{\mathcal{C}_{s}(G-v)}{\beta}$
For all path p of length 4 with $v \in p$, a bad coloring of $V(G)$ is p-bad, if p is bichromatic.
$\mid\{$ bad col. $\}\left|\leq \sum_{\substack{p \in P_{4} \\ v \in P^{4}}}\right|\{p-$ bad col. $\} \left\lvert\, \leq 2 \Delta^{3} \frac{\mathcal{C}_{5}(G-v)}{\beta}\right.$
Let $u \in N(v) \cap p$, then

$$
\mid\{p-\operatorname{bad} \text { col. }\} \left\lvert\, \leq \mathcal{C}_{s}(G-v-u) \leq \frac{\mathcal{C}_{s}(G-v)}{\beta}\right.
$$

Finally, $\quad \mathcal{C}_{s}(G) \geq\left(c-\Delta-\frac{2 \Delta^{3}}{\beta}\right) \mathcal{C}_{s}(G-v) \geq \beta \mathcal{C}_{s}(G-v)$

The statement

Theorem

Let G be a graph of maximum degree Δ, then

$$
\chi_{s}(G) \leq \min _{\beta>0}\left\lceil\Delta+\beta+\frac{2 \Delta^{3}}{\beta}\right\rceil
$$

The statement

Theorem

Let G be a graph of maximum degree Δ, then

$$
\chi_{s}(G) \leq \min _{\beta>0}\left\lceil\Delta+\beta+\frac{2 \Delta^{3}}{\beta}\right\rceil=\left\lceil\Delta+2 \sqrt{2} \Delta^{3 / 2}\right\rceil .
$$

Other applications

Chromatic number of triangle-free graphs of bounded degree

Problem (Vizing , 68)

If $\Delta(G)$ is the maximum degree of a vertex in a graph G, it is clear that $\chi(G) \leq \Delta(G)+1$. [...] Perhaps one should start with estimates of the chromatic number of a graph without triangles $(\omega=2)$ and with given maximal degree for vertices.

Chromatic number of triangle-free graphs of bounded degree

Problem (Vizing , 68)

If $\Delta(G)$ is the maximum degree of a vertex in a graph G, it is clear that $\chi(G) \leq \Delta(G)+1$. [...] Perhaps one should start with estimates of the chromatic number of a graph without triangles $(\omega=2)$ and with given maximal degree for vertices.

Similar problem already mentioned in the 50's by different authors (Erdős, Mycielski, Zykov...).

Johanson-Molloy

Theorem (Johanson, 1996)

For any triangle-free graph G of maximum degree Δ,

$$
\chi(G)=O\left(\frac{\Delta}{\log \Delta}\right)
$$

Johanson-Molloy

Theorem (Johanson, 1996)

For any triangle-free graph G of maximum degree Δ,

$$
\chi(G)=O\left(\frac{\Delta}{\log \Delta}\right)
$$

Theorem (Molloy, 2017

)

For any triangle-free graph G of maximum degree Δ,

$$
\chi(G) \leq(1+o(1)) \frac{\Delta}{\log \Delta}
$$

Johanson-Molloy

Theorem (Johanson, 1996)

For any triangle-free graph G of maximum degree Δ,

$$
\chi(G)=O\left(\frac{\Delta}{\log \Delta}\right)
$$

Theorem (Molloy, 2017

)

For any triangle-free graph G of maximum degree Δ,

$$
\chi(G) \leq(1+o(1)) \frac{\Delta}{\log \Delta}
$$

Tight up to a factor 2

Johanson-Molloy

Theorem (Johanson, 1996)

For any triangle-free graph G of maximum degree Δ,

$$
\chi(G)=O\left(\frac{\Delta}{\log \Delta}\right)
$$

Theorem (Molloy, 2017

Bernshteyn, Brazelton, Cao, and Kang, 2021

)

For any triangle-free graph G of maximum degree Δ,

$$
\chi(G) \leq(1+o(1)) \frac{\Delta}{\log \Delta}
$$

Tight up to a factor 2

Johanson-Molloy

Theorem (Johanson, 1996)

For any triangle-free graph G of maximum degree Δ,

$$
\chi(G)=O\left(\frac{\Delta}{\log \Delta}\right)
$$

Theorem (Molloy, 2017

Bernshteyn, Brazelton, Cao, and Kang, 2021 Pirot and Hurley, 2021
)
For any triangle-free graph G of maximum degree Δ,

$$
\chi(G) \leq(1+o(1)) \frac{\Delta}{\log \Delta}
$$

Tight up to a factor 2

Johanson-Molloy

Theorem (Johanson, 1996)

For any triangle-free graph G of maximum degree Δ,

$$
\chi(G)=O\left(\frac{\Delta}{\log \Delta}\right)
$$

Theorem (Molloy, 2017

Bernshteyn, Brazelton, Cao, and Kang, 2021
Pirot and Hurley, 2021
Martinsson, 2021)
For any triangle-free graph G of maximum degree Δ,

$$
\chi(G) \leq(1+o(1)) \frac{\Delta}{\log \Delta}
$$

Tight up to a factor 2

Other results

Applications to:

- SAT formulas,

Other results

Applications to:

- SAT formulas,
- Nonrepetitive colorings,
- proper coloring of triangle free-graphs,
- Frugal coloring, star-colorings, many graph colorings

Other results

Applications to:

- SAT formulas,
- Nonrepetitive colorings,
- proper coloring of triangle free-graphs,
- Frugal coloring, star-colorings, many graph colorings
- combinatorics on words (!!!),

Other results

Applications to:

- SAT formulas,
- Nonrepetitive colorings,
- proper coloring of triangle free-graphs,
- Frugal coloring, star-colorings, many graph colorings
- combinatorics on words (!!!),
- tilings,
- group theory,
-...

Wanless and Wood framework

Theorem (Wanless and Wood, 2020)

Let (G, \mathcal{B}) be an instance. Assume there exist a real number $\beta \geq 1$ and an integer $c \geq 1$ such that for every vertex v of G,

$$
c \geq \beta+\sum_{k \geq 0} \beta^{-k} E_{k}(v)
$$

Then G is (\mathcal{B}, c)-choosable. Moreover, for every c-list assignment L of G,

$$
P(G, \mathcal{B}, L) \geq \beta^{|V(G)|}
$$

The counting argument

- Is easier to use than entropy compression (and provides lower bounds on the number of solutions)

The counting argument

- Is easier to use than entropy compression (and provides lower bounds on the number of solutions)
- Frequently easier to use than LLL and frequently provide better bounds than LLL

The counting argument

- Is easier to use than entropy compression (and provides lower bounds on the number of solutions)
- Frequently easier to use than LLL and frequently provide better bounds than LLL
- It seems that it is a particular case of the Local Cut Lemma, but it is much easier to use

The counting argument

- Is easier to use than entropy compression (and provides lower bounds on the number of solutions)
- Frequently easier to use than LLL and frequently provide better bounds than LLL
- It seems that it is a particular case of the Local Cut Lemma, but it is much easier to use
- In combinatorics on words, can be coupled with other techniques to provide really strong results

The counting argument

- Is easier to use than entropy compression (and provides lower bounds on the number of solutions)
- Frequently easier to use than LLL and frequently provide better bounds than LLL
- It seems that it is a particular case of the Local Cut Lemma, but it is much easier to use
- In combinatorics on words, can be coupled with other techniques to provide really strong results

Try to apply it to your favorite problem =)

Thanks!

