A simple counting argument

Matthieu Rosenfeld
November 23, 2023
Local Lemmas and others
Lovász Local Lemma

Probabilistic method (Erdős):

Probabilistic argument \implies deterministic result
Probabilistic method (Erdős):
Probabilistic argument \implies deterministic result

Lovász Local Lemma (1975)

Let A_1, \ldots, A_k be events such that each event has probability at most p and depends on at most d other events. If

$$epd \leq 1$$

then the probability that no events occur is non-zero.
Probabilistic method (Erdős):
Probabilistic argument \implies deterministic result

Lovász Local Lemma (1975)
Let A_1, \ldots, A_k be events such that each event has probability at most p and depends on at most d other events. If

$$epd \leq 1$$

then the probability that no events occur is non-zero.

Theorem
Let ϕ be a k-SAT formula. If every variable belongs to at most $\frac{2^k}{ke}$ clauses then ϕ is satisfiable.
Theorem (Moser et Tardos, 2010, Gödel prize 2020)

Under LLL assumptions, there is a randomized algorithm that finds a satisfying assignment in expected polynomial time.

⇒ Entropy Compression
Theorem (Moser et Tardos, 2010, Gödel prize 2020)

Under LLL assumptions, there is a randomized algorithm that finds a satisfying assignment in expected polynomial time.

⇒ Entropy Compression

⇒ improvement of many bounds previously obtained by the LLL (SAT, graph or hypergraph colorings, combinatorics on words...)

... Entropy compression, local-cut Lemma, Counting argument
Theorem (Moser et Tardos, 2010, Gödel prize 2020)

Under LLL assumptions, there is a randomized algorithm that finds a satisfying assignment in expected polynomial time.

⇒ Entropy Compression

⇒ improvement of many bounds previously obtained by the LLL (SAT, graph or hypergraph colorings, combinatorics on words...)

Other techniques: Local-cut Lemma, Cluster-expansion (from statistical physics)
Theorem (Moser et Tardos, 2010, Gödel prize 2020)

Under LLL assumptions, there is a randomized algorithm that finds a satisfying assignment in expected polynomial time.

⇒ Entropy Compression

⇒ improvement of many bounds previously obtained by the LLL (SAT, graph or hypergraph colorings, combinatorics on words...)

Other techniques: Local-cut Lemma, Cluster-expansion (from statistical physics)...

[Rosenfeld, 2020] Counting argument: this talk
A first example: proper hypergraph colorings
A coloring of the vertices of H is **proper** if no edge is monochromatic.
A coloring of the vertices of H is **proper** if no edge is monochromatic.
A coloring of the vertices of H is **proper** if no edge is monochromatic.
A coloring of the vertices of H is **proper** if no edge is monochromatic.
A coloring of the vertices of H is **proper** if no edge is monochromatic.

The **chromatic number** $\chi(H)$ is the minimum of colors in a proper coloring of H.
A coloring of the vertices of H is **proper** if no edge is monochromatic.

The **chromatic number** $\chi(H)$ is the minimum of colors in a proper coloring of H.

The **degree** of a vertex v is the number of edges that contain v.

An hypergraph is r-regular if every edge is of size r.
A coloring of the vertices of H is **proper** if no edge is monochromatic.

The **chromatic number** $\chi(H)$ is the minimum of colors in a proper coloring of H.

The **degree** of a vertex v is the number of edges that contain v.

An hypergraph is **r-regular** if every edge is of size r.
Hypergraph colorings: a result

Intuitively: smaller degree or larger edges \implies easier to color

Theorem
Let $\beta \geq 1$. Let H be a r-uniform hypergraph of maximum degree Δ,
$\chi(H) \leq \beta + \Delta$. Let $c=\beta+\Delta$ and $C(H)$ be a proper c-coloring of H.

Lemma
Let H be a r-uniform hypergraph of maximum degree Δ, then $
\forall v \in V(H), C(H) \geq \beta C(H-v)$.
Hypergraph colorings: a result

Intuitively: smaller degree or larger edges \(\implies\) easier to color

Theorem

Let \(\beta \geq 1 \). Let \(H \) be a \(r \)-uniform hypergraph of maximum degree \(\Delta \),

\[
\chi(H) \leq \left\lceil \beta + \frac{\Delta}{\beta^{r-2}} \right\rceil.
\]

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let (\beta \geq 1). Let (H) be a (r)-uniform hypergraph of maximum degree (\Delta),</td>
</tr>
<tr>
<td>(\chi(H) \leq \left\lceil \beta + \frac{\Delta}{\beta^{r-2}} \right\rceil.)</td>
</tr>
</tbody>
</table>
Intuitively: smaller degree or larger edges \implies easier to color

Theorem

Let $\beta \geq 1$. Let H be a r-uniform hypergraph of maximum degree Δ, \[\chi(H) \leq \left\lceil \beta + \frac{\Delta}{\beta^{r-2}} \right\rceil.\]

Let $c = \left\lceil \beta + \frac{\Delta}{\beta^{r-2}} \right\rceil$ and $C(H)$ be $\#$ proper c-coloring of H.
Intuitively: smaller degree or larger edges \implies easier to color

Theorem

Let $\beta \geq 1$. Let H be a r-uniform hypergraph of maximum degree Δ, then

$$
\chi(H) \leq \left\lceil \beta + \frac{\Delta}{\beta^{r-2}} \right\rceil.
$$

Let $c = \left\lfloor \beta + \frac{\Delta}{\beta^{r-2}} \right\rfloor$ and $C(H)$ be the number of proper c-coloring of H.

Lemma

Let H be a r-uniform hypergraph of maximum degree Δ, then

$$
\forall v \in V(H), \quad C(H) \geq \beta C(H - v).
$$
Hypergraph colorings: a result

Intuitively: smaller degree or larger edges \(\implies\) easier to color

Theorem

Let \(\beta \geq 1\). Let \(H\) be a \(r\)-uniform hypergraph of maximum degree \(\Delta\),

\[
\chi(H) \leq \left\lceil \beta + \frac{\Delta}{\beta^{r-2}} \right\rceil.
\]

Let \(c = \left\lceil \beta + \frac{\Delta}{\beta^{r-2}} \right\rceil\) and \(C(H)\) be \# proper \(c\)-coloring of \(H\).

Lemma

Let \(H\) be a \(r\)-uniform hypergraph of maximum degree \(\Delta\), then

\[
\forall v \in V(H), \quad C(H) \geq \beta C(H - v).
\]

Proof of the Theorem: By induction, \(C(H) \geq \beta^{|H|}\)

\(\square\)
Proof by induction that $\forall v \in V(H), \quad C(H) \geq \beta C(H - v)$.

Induction hypothesis implies:

$\forall S \subseteq V(H - v), \quad C(H - v - S) \leq C(H - v) \beta |S|$.

A coloring of $V(H)$ is bad, if it is proper on $H - v$, but not on H.

$C(H) \geq c \cdot C(H - v) - \#\{\text{bad colorings}\} \geq c \cdot C(H - v) - \Delta C(H - v) \beta r - 2$.

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.

$\#\{\text{bad colorings}\} \leq X \#\{e\text{-bad colorings}\} \leq \Delta C(H - v) \beta r - 2$.

Let $w \in e \setminus v$, then $\#\{e\text{-bad colorings}\} \leq C(H - (e \setminus w)) \leq C(H - v) \beta r - 2$.

Finally, $C(H) \geq \frac{1}{2} c - \Delta \beta r - 2 \cdot C(H - v) \geq \beta C(H - v)$.

6
Proof by induction that $\forall v \in V(H), \quad C(H) \geq \beta C(H - v)$.

Induction hypothesis implies: $\forall S \subseteq V(H - v), \quad C(H - v - S) \leq \frac{C(H - v)}{\beta |S|}$
Proof by induction that \(\forall v \in V(H), \quad C(H) \geq \beta C(H - v) \).

Induction hypothesis implies: \(\forall S \subseteq V(H - v), \quad C(H - v - S) \leq \frac{C(H - v)}{\beta|S|} \)

A coloring of \(V(H) \) is bad, if it is proper on \(H - v \), but not on \(H \).
Proof by induction that $\forall v \in V(H), \quad C(H) \geq \beta C(H - v)$.

Induction hypothesis implies: $\forall S \subseteq V(H - v), \quad C(H - v - S) \leq \frac{C(H - v)}{\beta |S|}$

A coloring of $V(H)$ is bad, if it is proper on $H - v$, but not on H.

$C(H) \geq c \cdot C(H - v) - \#\{\text{bad colorings}\}$
Proof by induction that $\forall v \in V(H), \quad C(H) \geq \beta C(H - v)$.

Induction hypothesis implies: $\forall S \subseteq V(H - v), \quad C(H - v - S) \leq \frac{C(H - v)}{\beta |S|}$

A coloring of $V(H)$ is bad, if it is proper on $H - v$, but not on H.

$C(H) \geq c \cdot C(H - v) - \#\{\text{bad colorings}\}$

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.
Proof by induction that $\forall v \in V(H), \ C(H) \geq \beta C(H - v)$.

Induction hypothesis implies: $\forall S \subseteq V(H - v), \ C(H - v - S) \leq \frac{C(H - v)}{\beta |S|}$

A coloring of $V(H)$ is bad, if it is proper on $H - v$, but not on H.

$C(H) \geq c \cdot C(H - v) - \#\{\text{bad colorings}\}$

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.

$\#\{\text{bad colorings}\} \leq \sum_{e \sim v} \#\{\text{e-bad colorings}\}$
Proof by induction that $\forall v \in V(H), \quad C(H) \geq \beta C(H - v)$.

Induction hypothesis implies: $\forall S \subseteq V(H - v), \quad C(H - v - S) \leq \frac{C(H - v)}{\beta |S|}$

A coloring of $V(H)$ is bad, if it is proper on $H - v$, but not on H.

$$C(H) \geq c \cdot C(H - v) - \#\{\text{bad colorings}\}$$

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.

$$\#\{\text{bad colorings}\} \leq \sum_{e \sim v} \#\{e$-bad colorings$\}$$

Let $w \in e \setminus v$, then
Proof by induction that $\forall v \in V(H), \ C(H) \geq \beta C(H - v)$.

Induction hypothesis implies: $\forall S \subseteq V(H - v), \ C(H - v - S) \leq \frac{C(H - v)}{\beta |S|}$

A coloring of $V(H)$ is bad, if it is proper on $H - v$, but not on H.

$C(H) \geq c \cdot C(H - v) - \#\{\text{bad colorings}\}$

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.

$\#\{\text{bad colorings}\} \leq \sum_{e \sim v} \#\{e$-bad colorings$\}$

Let $w \in e \setminus v$, then
Proof by induction that $\forall v \in V(H), \ C(H) \geq \beta C(H - v)$.

Induction hypothesis implies: $\forall S \subseteq V(H - v), \ C(H - v - S) \leq \frac{C(H - v)}{\beta |S|}$

A coloring of $V(H)$ is bad, if it is proper on $H - v$, but not on H.

$C(H) \geq c \cdot C(H - v) - \#\{\text{bad colorings}\}$

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.

$\#\{\text{bad colorings}\} \leq \sum_{e \sim v} \#\{\text{e-bad colorings}\}$

Let $w \in e \setminus v$, then

$\#\{\text{e-bad colorings}\} \leq C(H - (e \setminus w))$
Proof by induction that $\forall v \in V(H), \quad C(H) \geq \beta C(H - v)$.

Induction hypothesis implies: $\forall S \subseteq V(H - v), \quad C(H - v - S) \leq \frac{C(H - v)}{\beta |S|}$

A coloring of $V(H)$ is bad, if it is proper on $H - v$, but not on H.

$\quad C(H) \geq c \cdot C(H - v) - \#\{\text{bad colorings}\}$

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.

$\#\{\text{bad colorings}\} \leq \sum_{e \sim v} \#\{e\text{-bad colorings}\}$

Let $w \in e \setminus v$, then

$\#\{e\text{-bad colorings}\} \leq C(H - (e \setminus w)) \leq \frac{C(H - v)}{\beta r - 2}$

Finally, $C(H) \geq \frac{C(H - v)}{\beta}$
Proof by induction that $\forall v \in V(H), \quad C(H) \geq \beta C(H - v)$.

Induction hypothesis implies: $\forall S \subseteq V(H - v), \quad C(H - v - S) \leq \frac{C(H - v)}{\beta |S|}$

A coloring of $V(H)$ is bad, if it is proper on $H - v$, but not on H.

$C(H) \geq c \cdot C(H - v) - \#\{\text{bad colorings}\}$

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.

$\#\{\text{bad colorings}\} \leq \sum_{e \sim v} \#\{\text{e-bad colorings}\} \leq \Delta \frac{C(H - v)}{\beta r - 2}$

Let $w \in e \setminus v$, then

$\#\{\text{e-bad colorings}\} \leq C(H - (e \setminus w)) \leq \frac{C(H - v)}{\beta r - 2}$
Proof by induction that $\forall v \in V(H), \quad C(H) \geq \beta C(H - v)$.

Induction hypothesis implies:

$\forall S \subseteq V(H - v), \quad C(H - v - S) \leq \frac{C(H - v)}{\beta |S|}$

A coloring of $V(H)$ is bad, if it is proper on $H - v$, but not on H.

$C(H) \geq c \cdot C(H - v) - \#\{\text{bad colorings}\} \geq c \cdot C(H - v) - \Delta \frac{C(H - v)}{\beta r - 2}$

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.

$\#\{\text{bad colorings}\} \leq \sum_{e \sim v} \#\{\text{e-bad colorings}\} \leq \Delta \frac{C(H - v)}{\beta r - 2}$

Let $w \in e \setminus v$, then

$\#\{\text{e-bad colorings}\} \leq C(H - (e \setminus w)) \leq \frac{C(H - v)}{\beta r - 2}$
Proof by induction that $\forall v \in V(H), \quad C(H) \geq \beta C(H - v)$.

Induction hypothesis implies: $\forall S \subseteq V(H - v), \quad C(H - v - S) \leq \frac{C(H - v)}{\beta |S|}$

A coloring of $V(H)$ is bad, if it is proper on $H - v$, but not on H.

$\forall S \subseteq V(H - v), \quad C(H - v - S) \leq \frac{C(H - v)}{\beta |S|}$

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.

$\forall S \subseteq V(H - v), \quad C(H - v - S) \leq \frac{C(H - v)}{\beta |S|}$

Let $w \in e \setminus v$, then

$\#\{e\text{-bad colorings}\} \leq \left| C(H - (e \setminus w)) \leq \frac{C(H - v)}{\beta |S|} \right.$

Finally,

$C(H) \geq \left(c - \frac{\Delta}{\beta r - 2} \right) C(H - v)$
Proof by induction that $\forall v \in V(H), \quad C(H) \geq \beta C(H - v)$.

Induction hypothesis implies: $\forall S \subseteq V(H - v), \quad C(H - v - S) \leq \frac{C(H - v)}{\beta |S|}$

A coloring of $V(H)$ is bad, if it is proper on $H - v$, but not on H.

$C(H) \geq c \cdot C(H - v) - \#\text{bad colorings} \geq c \cdot C(H - v) - \Delta \frac{C(H - v)}{\beta r^{-2}}$

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.

$\#\text{bad colorings} \leq \sum_{e \sim v} \#\text{e-bad colorings} \leq \Delta \frac{C(H - v)}{\beta r^{-2}}$

Let $w \in e \setminus v$, then

$\#\text{e-bad colorings} \leq C(H - (e \setminus w)) \leq \frac{C(H - v)}{\beta r^{-2}}$

Finally, $C(H) \geq \left(c - \frac{\Delta}{\beta r^{-2}} \right) C(H - v) \geq \beta C(H - v)$
Lemma

Let H be an r-regular hypergraph of maximum degree Δ. Then

$$\chi(H) \leq c := \min_{\beta > 0} \left[\beta + \frac{\Delta}{\beta^{r-2}} \right].$$

Moreover, the number of proper c-coloring of H is at least $\beta |V(H)|$.

Theorem (Wanless and Wood, 2020)

Let $r > 2$. Let H be a r-uniform hypergraph of maximum degree Δ, $\chi(H) \leq \frac{\Delta}{r-1} \frac{1}{(r-1)(r-2)}$.

Asymptotically optimal. Slightly better than [Erdős and Lovász, 1975]

Remark: For the chromatic number of graphs (2-regular hypergraph), we have $c = \Delta + 1$.
Lemma

Let H be an r-regular hypergraph of maximum degree Δ. Then

$$\chi(H) \leq c := \min_{\beta > 0} \left[\beta + \frac{\Delta}{\beta r - 2} \right].$$

Moreover, the number of proper c-coloring of H is at least $\beta^{|V(H)|}$.
Lemma

Let H be an r-regular hypergraph of maximum degree Δ. Then

$$\chi(H) \leq c := \min_{\beta > 0} \left[\beta + \frac{\Delta}{\beta^{r-2}} \right].$$

Moreover, the number of proper c-coloring of H is at least $\beta^{|V(H)|}$.

Theorem (Wanless and Wood, 2020)

Let $r > 2$. Let H be a r-uniform hypergraph of maximum degree Δ,

$$\chi(H) \leq \left[\left(\frac{r-1}{r-2} \right) ((r - 2)\Delta)^{1/(r-1)} \right].$$

Asymptotically optimal. Slightly better than [Erdős and Lovász, 1975]
Lemma

Let H be an r-regular hypergraph of maximum degree Δ. Then

$$\chi(H) \leq c := \min_{\beta > 0} \left[\beta + \frac{\Delta}{\beta^{r-2}} \right].$$

Moreover, the number of proper c-coloring of H is at least $\beta^{|V(H)|}$.

Theorem (Wanless and Wood, 2020)

Let $r > 2$. Let H be a r-uniform hypergraph of maximum degree Δ,

$$\chi(H) \leq \left\lceil \left(\frac{r-1}{r-2} \right) ((r-2)\Delta)^{1/(r-1)} \right\rceil.$$

Asymptotically optimal. Slightly better than [Erdős and Lovász, 1975]

Remark: For the chromatic number of graphs (2-regular hypergraph), we have $c = \Delta + 1$.
A second example: Star coloring
A star coloring of a graph G is a proper coloring such that any pair of color classes induces a forest of stars.
A star coloring of a graph G is a proper coloring such that any pair of color classes induces a forest of stars.

Equivalently: A star coloring of a graph G is a proper coloring such that no p_4 is bi-chromatic.
A star coloring of a graph G is a proper coloring such that any pair of color classes induces a forest of stars.

Equivalently: A star coloring of a graph G is a proper coloring such that no p_4 is bi-chromatic.
A star coloring of a graph G is a proper coloring such that any pair of color classes induces a forest of stars.

Equivalently: A star coloring of a graph G is a proper coloring such that no p_4 is bi-chromatic.
A star coloring of a graph G is a proper coloring such that any pair of color classes induces a forest of stars.

Equivalently: A star coloring of a graph G is a proper coloring such that no p_4 is bi-chromatic.
A star coloring of a graph G is a proper coloring such that any pair of color classes induces a forest of stars.

Equivalently: A star coloring of a graph G is a proper coloring such that no p_4 is bi-chromatic.
A star coloring of a graph G is a proper coloring such that any pair of color classes induces a forest of stars.

Equivalently: A star coloring of a graph G is a proper coloring such that no p_4 is bi-chromatic.

$\chi_s(G)$ is the minimum number of colors in a star coloring of G.
For all graph G of maximum degree Δ,

Theorem (Fertin, Raspaud, and Reed, 2004)

$$\chi_s(G) \leq 20\Delta^{3/2}$$
For all graph G of maximum degree Δ,

Theorem (Fertin, Raspaud, and Reed, 2004)

$$\chi_s(G) \leq 20\Delta^{3/2}$$

Theorem (Ndreca, Procacci, and Scoppola, 2012)

$$\chi_s(G) \leq 4.34\Delta^{3/2} + 1.5\Delta$$
For all graph G of maximum degree Δ,

Theorem (Fertin, Raspaud, and Reed, 2004)

$$\chi_s(G) \leq 20\Delta^{3/2}$$

Theorem (Ndreca, Procacci, and Scoppola, 2012)

$$\chi_s(G) \leq 4.34\Delta^{3/2} + 1.5\Delta$$

Theorem (Esperet, and Parreau, 2013)

$$\chi_s(G) \leq \left[2\sqrt{2}\Delta^{3/2} + \Delta \right]$$
For all graph G of maximum degree Δ,

Theorem (Fertin, Raspaud, and Reed, 2004 LLL)

$$\chi_s(G) \leq 20\Delta^{3/2}$$

Theorem (Ndreca, Procacci, and Scoppola, 2012 LLL)

$$\chi_s(G) \leq 4.34\Delta^{3/2} + 1.5\Delta$$

Theorem (Esperet, and Parreau, 2013 Entropy Compression)

$$\chi_s(G) \leq \left\lfloor 2\sqrt{2}\Delta^{3/2} + \Delta \right\rfloor$$
Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$, the number of p_4 that contains v is at most,

$$|\{p | p \text{ is a } p_4, v \in p\}| \leq 2\Delta^3.$$
A useful lemma

Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$, the number of p_4 that contains v is at most,

$$|\{p | p \text{ is a } p_4, v \in p\}| \leq 2\Delta^3.$$
A useful lemma

Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$, the number of p_4 that contains v is at most,

$$|\{p \mid p \text{ is a } p_4, v \in p\}| \leq 2\Delta^3.$$
For any graph G of maximum degree Δ and any $v \in V(G)$, the number of p_4 that contains v is at most,

$$|\{p | p \text{ is a } p_4, v \in p\}| \leq 2\Delta^3.$$
A useful lemma

Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$, the number of p_4 that contains v is at most,

$$|\{p|p \text{ is a } p_4, v \in p\}| \leq 2\Delta^3.$$
Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$, the number of p_4 that contains v is at most,

$$\left| \{ p \mid p \text{ is a } p_4, v \in p \} \right| \leq 2\Delta^3.$$
A useful lemma

Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$, the number of p_4 that contains v is at most,

$$|\{p | p \text{ is a } p_4, v \in p\}| \leq 2\Delta^3.$$
A usefull lemma

Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$, the number of p_4 that contains v is at most,

$$|\{p | p \text{ is a } p_4, v \in p\}| \leq 2\Delta^3.$$

In total: $\leq \Delta^3$ choices
Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$, the number of p_4 that contains v is at most,

$$|\{p| p \text{ is a } p_4, \, v \in p\}| \leq 2\Delta^3.$$
A usefull lemma

Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$, the number of p_4 that contains v is at most,

$$|\{p | p \text{ is a } p_4, v \in p\}| \leq 2\Delta^3.$$
A useful lemma

Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$, the number of p_4 that contains v is at most,

$$|\{p \mid p \text{ is a } p_4, v \in p\}| \leq 2\Delta^3.$$
Star coloring: with the counting argument

Theorem (This talk)

\[\chi_s(G) \leq \left\lfloor 2\sqrt{2}\Delta^{3/2} + \Delta \right\rfloor \]
Theorem (This talk)

\[\chi_s(G) \leq \left\lceil 2\sqrt{2}\Delta^{3/2} + \Delta \right\rceil \]

Let \(c = \left\lceil 2\sqrt{2}\Delta^{3/2} + \Delta \right\rceil \).

We let \(C_s(G) \) be the number of star \(c \)-colorings of \(G \).

Let \(\beta \) such that \(c - \Delta - \frac{2\Delta^3}{\beta} \geq \beta \).
Theorem (This talk)

\[\chi_s(G) \leq \left\lfloor 2\sqrt{2\Delta^3/2} + \Delta \right\rfloor \]

Let \(c = \left\lfloor 2\sqrt{2\Delta^3/2} + \Delta \right\rfloor \).

We let \(C_s(G) \) be the number of star \(c \)-colorings of \(G \).

Let \(\beta \) such that \(c - \Delta - \frac{2\Delta^3}{\beta} \geq \beta \).

Theorem is a corollary of:

Lemma

For any graph \(G \) of maximum degree \(\Delta \) and any \(v \in V(G) \),

\[C_s(G) \geq \beta C_s(G - v) \].
Proof by induction that $\forall v \in V(G), \quad C_s(G) \geq \beta C_s(G - v)$
Proof by induction that $\forall v \in V(G), \quad C_s(G) \geq \beta C_s(G - v)$

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$
Proof by induction that $\forall v \in V(G), \quad C_s(G) \geq \beta C_s(G - v)$

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

A proper-coloring of $V(G)$ is bad, if the restriction to $V(G - v)$ is a star coloring, but not the restriction to $V(G)$.
Proof by induction that $\forall v \in V(G), \quad C_s(G) \geq \beta C_s(G - v)$

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

A proper-coloring of $V(G)$ is bad, if the restriction to $V(G - v)$ is a star coloring, but not the restriction to $V(G)$.

$C_s(G) \geq (c - \Delta) \cdot C_s(G - v) - \#\{\text{bad col.}\}$
Proof by induction that $\forall v \in V(G), \quad C_s(G) \geq \beta C_s(G - v)$

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

A proper-coloring of $V(G)$ is bad, if the restriction to $V(G - v)$ is a star coloring, but not the restriction to $V(G)$.

$C_s(G) \geq (c - \Delta) \cdot C_s(G - v) - \#\{\text{bad col.}\}$

For all path p of length 4 with $v \in p$, a bad coloring of $V(G)$ is p-bad, if p is bichromatic.
Proof by induction that \(\forall v \in V(G), \quad C_s(G) \geq \beta C_s(G - v) \)

Induction hypothesis implies: \(\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta} \)

A proper-coloring of \(V(G) \) is \textit{bad}, if the restriction to \(V(G - v) \) is a star coloring, but not the restriction to \(V(G) \).

\[C_s(G) \geq (c - \Delta) \cdot C_s(G - v) - \#\{\text{bad col.}\} \]

For all path \(p \) of length 4 with \(v \in p \), a bad coloring of \(V(G) \) is \textit{p-bad}, if \(p \) is bichromatic.

\[|\{\text{bad col.}\}| \leq \sum_{p \in P_4, v \in p} |\{\text{p-bad col.}\}| \]
Proof by induction that $\forall v \in V(G), \quad C_s(G) \geq \beta C_s(G - v)$

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

A proper-coloring of $V(G)$ is bad, if the restriction to $V(G - v)$ is a star coloring, but not the restriction to $V(G)$.

$C_s(G) \geq (c - \Delta) \cdot C_s(G - v) - \#\{\text{bad col.}\}$

For all path p of length 4 with $v \in p$, a bad coloring of $V(G)$ is p-bad, if p is bichromatic.

$|\{\text{bad col.}\}| \leq \sum_{p \in P_4, v \in p} |\{p\text{-bad col.}\}|$

Let $u \in N(v) \cap p$, then
Proof by induction that $\forall v \in V(G), \quad C_s(G) \geq \beta C_s(G - v)$

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

A proper-coloring of $V(G)$ is bad, if the restriction to $V(G - v)$ is a star coloring, but not the restriction to $V(G)$.

$C_s(G) \geq (c - \Delta) \cdot C_s(G - v) - \#\{\text{bad col.}\}$

For all path p of length 4 with $v \in p$, a bad coloring of $V(G)$ is p-bad, if p is bichromatic.

$|\{\text{bad col.}\}| \leq \sum_{\substack{p \in P_4 \quad v \in p}} |\{p\text{-bad col.}\}|$

Let $u \in N(v) \cap p$, then
Proof by induction that $\forall v \in V(G), \quad C_s(G) \geq \beta C_s(G - v)$

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

A proper-coloring of $V(G)$ is bad, if the restriction to $V(G - v)$ is a star coloring, but not the restriction to $V(G)$.

$C_s(G) \geq (c - \Delta) \cdot C_s(G - v) - \#\{\text{bad col.}\}$

For all path p of length 4 with $v \in p$, a bad coloring of $V(G)$ is p-bad, if p is bichromatic.

$|\{\text{bad col.}\}| \leq \sum_{p \in P_4 \atop v \in p} |\{p\text{-bad col.}\}|$

Let $u \in N(v) \cap p$, then

$|\{p\text{-bad col.}\}| \leq C_s(G - v - u)$
Proof by induction that $\forall v \in V(G), \quad C_s(G) \geq \beta C_s(G - v)$

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

A proper-coloring of $V(G)$ is bad, if the restriction to $V(G - v)$ is a star coloring, but not the restriction to $V(G)$.

$C_s(G) \geq (c - \Delta) \cdot C_s(G - v) - \#\{\text{bad col.}\}$

For all path p of length 4 with $v \in p$, a bad coloring of $V(G)$ is p-bad, if p is bichromatic.

$|\{\text{bad col.}\}| \leq \sum_{p \in P_{4} \atop v \in p} |\{p\text{-bad col.}\}|$

Let $u \in N(v) \cap p$, then

$|\{p\text{-bad col.}\}| \leq C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$
Proof by induction that $\forall v \in V(G), \quad C_s(G) \geq \beta C_s(G - v)$

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

A proper-coloring of $V(G)$ is *bad*, if the restriction to $V(G - v)$ is a star coloring, but not the restriction to $V(G)$.

$C_s(G) \geq (c - \Delta) \cdot C_s(G - v) - \#\{\text{bad col.}\}$

For all path p of length 4 with $v \in p$, a bad coloring of $V(G)$ is p-bad, if p is bichromatic.

$|\{\text{bad col.}\}| \leq \sum_{p \in P_4, \, v \in p} |\{p\text{-bad col.}\}| \leq 2\Delta^3 \frac{C_s(G - v)}{\beta}$

Let $u \in N(v) \cap p$, then

$|\{p\text{-bad col.}\}| \leq C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$
Proof by induction that $\forall v \in V(G), \ C_s(G) \geq \beta C_s(G - v)$

Induction hypothesis implies: $\forall u \in V(G - v), \ C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

A proper-coloring of $V(G)$ is bad, if the restriction to $V(G - v)$ is a star coloring, but not the restriction to $V(G)$.

$$C_s(G) \geq (c - \Delta) \cdot C_s(G - v) - \#\{\text{bad col.}\} \geq c \cdot C_s(G - v) - 2\Delta^3 \frac{C_s(G - v)}{\beta}$$

For all path p of length 4 with $v \in p$, a bad coloring of $V(G)$ is p-bad, if p is bichromatic.

$$|\{\text{bad col.}\}| \leq \sum_{\substack{p \in P_4 \\text{such that} \ v \in p}} |\{\text{p-bad col.}\}| \leq 2\Delta^3 \frac{C_s(G - v)}{\beta}$$

Let $u \in N(v) \cap p$, then

$$|\{\text{p-bad col.}\}| \leq C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$$
Proof by induction that $\forall v \in V(G), \quad C_s(G) \geq \beta C_s(G - v)$

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

A proper-coloring of $V(G)$ is bad, if the restriction to $V(G - v)$ is a star coloring, but not the restriction to $V(G)$.

$C_s(G) \geq (c - \Delta) \cdot C_s(G - v) - \#\{\text{bad col.}\} \geq c \cdot C_s(G - v) - 2\Delta^3 C_s(G - v) \frac{C_s(G - v)}{\beta}$

For all path p of length 4 with $v \in p$, a bad coloring of $V(G)$ is p-bad, if p is bichromatic.

$|\{\text{bad col.}\}| \leq \sum_{\substack{p \in P_4 \setminus v \in p}} |\{p\text{-bad col.}\}| \leq 2\Delta^3 \frac{C_s(G - v)}{\beta}$

Let $u \in N(v) \cap p$, then

$|\{p\text{-bad col.}\}| \leq C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

Finally, $C_s(G) \geq \left(c - \Delta - \frac{2\Delta^3}{\beta}\right) C_s(G - v)$
Proof by induction that $\forall v \in V(G), \quad C_s(G) \geq \beta C_s(G - v)$

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

A proper-coloring of $V(G)$ is bad, if the restriction to $V(G - v)$ is a star coloring, but not the restriction to $V(G)$.

$$C_s(G) \geq (c - \Delta) \cdot C_s(G - v) - \# \{\text{bad col.}\} \geq c \cdot C_s(G - v) - 2\Delta^3 \frac{C_s(G - v)}{\beta}$$

For all path p of length 4 with $v \in p$, a bad coloring of $V(G)$ is p-bad, if p is bichromatic.

$$|\{\text{bad col.}\}| \leq \sum_{p \in P_4 \atop \forall v \in p} |\{p\text{-bad col.}\}| \leq 2\Delta^3 \frac{C_s(G - v)}{\beta}$$

Let $u \in N(v) \cap p$, then

$$|\{p\text{-bad col.}\}| \leq C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$$

Finally, $C_s(G) \geq \left(c - \Delta - \frac{2\Delta^3}{\beta} \right) C_s(G - v) \geq \beta C_s(G - v) \quad \square$
Theorem

Let G be a graph of maximum degree Δ, then

$$\chi_s(G) \leq \min_{\beta > 0} \left\lfloor \Delta + \beta + \frac{2\Delta^3}{\beta} \right\rfloor$$
Theorem

Let G be a graph of maximum degree Δ, then

$$\chi_s(G) \leq \min_{\beta > 0} \left\lfloor \Delta + \beta + \frac{2\Delta^3}{\beta} \right\rfloor = \left\lfloor \Delta + 2\sqrt{2\Delta^{3/2}} \right\rfloor.$$
Other applications
Problem (Vizing, 68)

If $\Delta(G)$ is the maximum degree of a vertex in a graph G, it is clear that $\chi(G) \leq \Delta(G) + 1$. [...] Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices.
Problem (Vizing, 68)

If $\Delta(G)$ is the maximum degree of a vertex in a graph G, it is clear that $\chi(G) \leq \Delta(G) + 1$. [...] Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices.

Similar problem already mentioned in the 50’s by different authors (Erdős, Mycielski, Zykov...).
Theorem (Johanson, 1996)

For any triangle-free graph G of maximum degree Δ,

$$\chi(G) = O\left(\frac{\Delta}{\log \Delta}\right)$$
<table>
<thead>
<tr>
<th>Theorem (Johanson, 1996)</th>
<th>Theorem (Molloy, 2017)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For any triangle-free graph G of maximum degree Δ, $\chi(G) = O\left(\frac{\Delta}{\log \Delta}\right)$</td>
<td>For any triangle-free graph G of maximum degree Δ, $\chi(G) \leq (1 + o(1))\frac{\Delta}{\log \Delta}$</td>
</tr>
</tbody>
</table>
Johanson-Molloy

Theorem (Johanson, 1996)

For any triangle-free graph G of maximum degree Δ,

$$\chi(G) = O\left(\frac{\Delta}{\log \Delta}\right)$$

Theorem (Molloy, 2017)

For any triangle-free graph G of maximum degree Δ,

$$\chi(G) \leq (1 + o(1))\frac{\Delta}{\log \Delta}$$

Tight up to a factor 2
Theorem (Johanson, 1996)

For any triangle-free graph G of maximum degree Δ,

$$\chi(G) = O\left(\frac{\Delta}{\log \Delta}\right)$$

Theorem (Molloy, 2017)

Bernshteyn, Brazelton, Cao, and Kang, 2021

For any triangle-free graph G of maximum degree Δ,

$$\chi(G) \leq (1 + o(1))\frac{\Delta}{\log \Delta}$$

Tight up to a factor 2
Theorem (Johanson, 1996)

For any triangle-free graph G of maximum degree Δ,

$$\chi(G) = O\left(\frac{\Delta}{\log \Delta}\right)$$

Theorem (Molloy, 2017
Bernshteyn, Brazelton, Cao, and Kang, 2021
Pirot and Hurley, 2021
)

For any triangle-free graph G of maximum degree Δ,

$$\chi(G) \leq (1 + o(1))\frac{\Delta}{\log \Delta}$$

Tight up to a factor 2
Johanson-Molloy

<table>
<thead>
<tr>
<th>Theorem (Johanson, 1996)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For any triangle-free graph G of maximum degree Δ,</td>
</tr>
<tr>
<td>$\chi(G) = O\left(\frac{\Delta}{\log \Delta}\right)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Molloy, 2017)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernshteyn, Brazelton, Cao, and Kang, 2021</td>
</tr>
<tr>
<td>Pirot and Hurley, 2021</td>
</tr>
<tr>
<td>Martinsson, 2021</td>
</tr>
<tr>
<td>For any triangle-free graph G of maximum degree Δ,</td>
</tr>
<tr>
<td>$\chi(G) \leq (1 + o(1)) \frac{\Delta}{\log \Delta}$</td>
</tr>
</tbody>
</table>

Tight up to a factor 2
Applications to:

• SAT formulas,
Applications to:

- SAT formulas,
- Nonrepetitive colorings,
- Proper coloring of triangle free-graphs,
- Frugal coloring, star-colorings, many graph colorings
Applications to:

- SAT formulas,
- Nonrepetitive colorings,
- proper coloring of triangle free-graphs,
- Frugal coloring, star-colorings, many graph colorings
- combinatorics on words (!!!),
Other results

Applications to:

• SAT formulas,
• Nonrepetitive colorings,
• proper coloring of triangle free-graphs,
• Frugal coloring, star-colorings, many graph colorings
• combinatorics on words (!!!),
• tilings,
• group theory,
• ...
Wanless and Wood framework

Theorem (Wanless and Wood, 2020)

Let \((G, B)\) be an instance. Assume there exist a real number \(\beta \geq 1\) and an integer \(c \geq 1\) such that for every vertex \(v\) of \(G\),

\[
c \geq \beta + \sum_{k \geq 0} \beta^{-k} E_k(v).
\]

Then \(G\) is \((B, c)\)-choosable. Moreover, for every \(c\)-list assignment \(L\) of \(G\),

\[
P(G, B, L) \geq \beta^{|V(G)|}.
\]
The counting argument

- Is easier to use than entropy compression (and provides lower bounds on the number of solutions)
- Frequently easier to use than LLL and frequently provide better bounds than LLL
- It seems that it is a particular case of the Local Cut Lemma, but it is much easier to use
- In combinatorics on words, can be coupled with other techniques to provide really strong results
- Try to apply it to your favorite problem =)
The counting argument

- Is easier to use than entropy compression (and provides lower bounds on the number of solutions)
- Frequently easier to use than LLL and frequently provide better bounds than LLL
The counting argument

• Is easier to use than entropy compression (and provides lower bounds on the number of solutions)
• Frequently easier to use than LLL and frequently provide better bounds than LLL
• It seems that it is a particular case of the Local Cut Lemma, but it is much easier to use
The counting argument

- Is easier to use than entropy compression (and provides lower bounds on the number of solutions)
- Frequently easier to use than LLL and frequently provide better bounds than LLL
- It seems that it is a particular case of the Local Cut Lemma, but it is much easier to use
- In combinatorics on words, can be coupled with other techniques to provide really strong results

Try to apply it to your favorite problem =)
The counting argument

- Is easier to use than entropy compression (and provides lower bounds on the number of solutions)
- Frequently easier to use than LLL and frequently provide better bounds than LLL
- It seems that it is a particular case of the Local Cut Lemma, but it is much easier to use
- In combinatorics on words, can be coupled with other techniques to provide really strong results

Try to apply it to your favorite problem =)
Thanks !