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Local Lemmas and others



Lovász Local Lemma

Probabilistic method (Erdős):

Probabilistic argument =⇒ deterministic result

Lovász Local Lemma (1975)
Let A1, . . . ,Ak be events such that each event has probability at
most p and depends on at most d other events. If

epd ≤ 1

then the probability that no events occur is non-zero.

Theorem

Let ϕ be a k-SAT formula. If every variable belongs to at most 2k

ke
clauses then ϕ is satisfiable.
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... Entropy compression, local-cut Lemma, Counting argument

Theorem (Moser et Tardos, 2010, Gödel prize 2020)
Under LLL assumptions, there is a randomized algorithm that finds
a satisfying assignment in expected polynomial time.

=⇒ Entropy Compression

=⇒ improvement of many bounds previously obtained by the LLL
(SAT, graph or hypergraph colorings, combinatorics on words...)

Other techniques: Local-cut Lemma, Cluster-expansion (from
statistical physics)...

[Rosenfeld, 2020] Counting argument: this talk
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A first example:
proper hypergraph colorings



Hypergraph colorings: Definition and Theorem

A coloring of the vertices of H is proper if no edge is monochromatic.

The chromatic number χ(H) is the minimum of colors in a proper
coloring of H.

The degree of a vertex v is the number of edges that contain v.

An hypergraph if r-regular if every edge is of size r.
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Hypergraph colorings: a result

Intuitively: smaller degree or larger edges =⇒ easier to color

Theorem
Let β ≥ 1. Let H be a r-uniform hypergraph of maximum degree ∆,

χ(H) ≤
°
β +

∆

βr−2

§
.

Let c =
†
β + ∆

βr−2

£
and C(H) be # proper c-coloring of H.

Lemma
Let H be a r-uniform hypergraph of maximum degree ∆, then

∀v ∈ V(H), C(H) ≥ βC(H − v) .

Proof of the Theorem: By induction, C(H) ≥ β|H|

5



Hypergraph colorings: a result

Intuitively: smaller degree or larger edges =⇒ easier to color

Theorem
Let β ≥ 1. Let H be a r-uniform hypergraph of maximum degree ∆,

χ(H) ≤
°
β +

∆

βr−2

§
.

Let c =
†
β + ∆

βr−2

£
and C(H) be # proper c-coloring of H.

Lemma
Let H be a r-uniform hypergraph of maximum degree ∆, then

∀v ∈ V(H), C(H) ≥ βC(H − v) .

Proof of the Theorem: By induction, C(H) ≥ β|H|

5



Hypergraph colorings: a result

Intuitively: smaller degree or larger edges =⇒ easier to color

Theorem
Let β ≥ 1. Let H be a r-uniform hypergraph of maximum degree ∆,

χ(H) ≤
°
β +

∆

βr−2

§
.

Let c =
†
β + ∆

βr−2

£
and C(H) be # proper c-coloring of H.

Lemma
Let H be a r-uniform hypergraph of maximum degree ∆, then

∀v ∈ V(H), C(H) ≥ βC(H − v) .

Proof of the Theorem: By induction, C(H) ≥ β|H|

5



Hypergraph colorings: a result

Intuitively: smaller degree or larger edges =⇒ easier to color

Theorem
Let β ≥ 1. Let H be a r-uniform hypergraph of maximum degree ∆,

χ(H) ≤
°
β +

∆

βr−2

§
.

Let c =
†
β + ∆

βr−2

£
and C(H) be # proper c-coloring of H.

Lemma
Let H be a r-uniform hypergraph of maximum degree ∆, then

∀v ∈ V(H), C(H) ≥ βC(H − v) .

Proof of the Theorem: By induction, C(H) ≥ β|H|

5



Hypergraph colorings: a result

Intuitively: smaller degree or larger edges =⇒ easier to color

Theorem
Let β ≥ 1. Let H be a r-uniform hypergraph of maximum degree ∆,

χ(H) ≤
°
β +

∆

βr−2

§
.

Let c =
†
β + ∆

βr−2

£
and C(H) be # proper c-coloring of H.

Lemma
Let H be a r-uniform hypergraph of maximum degree ∆, then

∀v ∈ V(H), C(H) ≥ βC(H − v) .

Proof of the Theorem: By induction, C(H) ≥ β|H|

5



Proof by induction that ∀v ∈ V(H), C(H) ≥ βC(H − v) .

Induction hypothesis implies: ∀S ⊆ V(H − v), C(H − v − S) ≤ C(H − v)
β|S|

A coloring of V(H) is bad, if it is proper on H − v, but not on H.

C(H) ≥ c · C(H − v)−#{bad colorings}

≥ c · C(H − v)−∆
C(H − v)
βr−2

For each edge e ∼ v, a bad c-coloring of H is e-bad, if it is
monochromatic on e.

#{bad colorings} ≤
∑
e∼v

#{e-bad colorings}

≤ ∆
C(H − v)
βr−2

Let w ∈ e \ v, then

#{e-bad colorings} ≤ C(H− (e \w))

≤ C(H − v)
βr−2

Finally, C(H) ≥
Å

c − ∆

βr−2

ã
C(H − v) ≥ βC(H − v)
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Back to the Theorem

Lemma
Let H be an r-regular hypergraph of maximum degree ∆. Then

χ(H) ≤ c := min
β>0

°
β +

∆

βr−2

§
.

Moreover, the number of proper c-coloring of H is at least β|V(H)|.

Theorem (Wanless and Wood, 2020)
Let r > 2. Let H be a r-uniform hypergraph of maximum degree ∆,

χ(H) ≤
°Å r − 1

r − 2

ã
((r − 2)∆)1/(r−1)

§
.

Asymptotically optimal. Slightly better than [Erdős and Lovász, 1975]

Remark: For the chromatic number of graphs (2-regular
hypergraph), we have c = ∆+ 1.
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A second example:
Star coloring



Star coloring: definition

A star coloring of a graph G is a proper coloring such that any pair of
color classes induces a forest of stars.

Equivalently: A star coloring of a graph G is a proper coloring such
that no p4 is bi-chromatic.

χs(G) is the minimum number of colors in a star coloring of G

8
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Star coloring: results

For all graph G of maximum degree ∆,

Theorem (Fertin, Raspaud, and Reed, 2004)

χs(G) ≤ 20∆3/2

Theorem (Ndreca, Procacci, and Scoppola, 2012)

χs(G) ≤ 4.34∆3/2 + 1.5∆

Theorem (Esperet, and Parreau, 2013)

χs(G) ≤
†
2
√

2∆3/2 +∆
£
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Star coloring: results

For all graph G of maximum degree ∆,

Theorem (Fertin, Raspaud, and Reed, 2004 LLL)

χs(G) ≤ 20∆3/2

Theorem (Ndreca, Procacci, and Scoppola, 2012 LLL)

χs(G) ≤ 4.34∆3/2 + 1.5∆

Theorem (Esperet, and Parreau, 2013 Entropy Compression)
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A usefull lemma

Lemma
For any graph G of maximum degree ∆ and any v ∈ V(G), the
number of p4 that contains v is at most,

|{p|p is a p4, v ∈ p}| ≤ 2∆3 .
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Star coloring: with the counting argument

Theorem (This talk)

χs(G) ≤
†
2
√

2∆3/2 +∆
£

Let c =
⌈
2
√

2∆3/2 +∆
⌉
.

We let Cs(G) be the number of star c-colorings of G.

Let β such that c −∆− 2∆3

β ≥ β.

Theorem is a corollary of:

Lemma
For any graph G of maximum degree ∆ and any v ∈ V(G),

Cs(G) ≥ βCs(G − v) .
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Proof by induction that ∀v ∈ V(G), Cs(G) ≥ βCs(G − v)

Induction hypothesis implies: ∀u ∈ V(G − v), Cs(G − v − u) ≤ Cs(G − v)
β

A proper-coloring of V(G) is bad, if the restriction to V(G − v) is a
star coloring, but not the restriction to V(G).

Cs(G) ≥ (c−∆) ·Cs(G−v)−#{bad col.}

≥ c · Cs(G − v)− 2∆3 Cs(G − v)
β

For all path p of length 4 with v ∈ p, a bad coloring of V(G) is p-bad,
if p is bichromatic.

|{bad col.}| ≤
∑
p∈P4
v∈p

|{p-bad col.}|

≤ 2∆3 Cs(G − v)
β

Let u ∈ N(v) ∩ p, then
|{p-bad col.}| ≤ Cs(G − v − u)

≤ Cs(G − v)
β

v

Finally, Cs(G) ≥
Å

c −∆− 2∆3

β

ã
Cs(G − v) ≥ βCs(G − v)
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The statement

Theorem
Let G be a graph of maximum degree ∆, then

χs(G) ≤ min
β>0

°
∆+ β +

2∆3

β

§

= ⌈∆+ 2
√

2∆3/2⌉ .
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Other applications



Chromatic number of triangle-free graphs of bounded degree

Problem (Vizing , 68)
If ∆(G) is the maximum degree of a vertex in a graph G, it is clear
that χ(G) ≤ ∆(G) + 1. [...] Perhaps one should start with estimates
of the chromatic number of a graph without triangles (ω = 2) and
with given maximal degree for vertices.

Similar problem already mentioned in the 50’s by different authors
(Erdős, Mycielski, Zykov...).

14
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Johanson-Molloy

Theorem (Johanson, 1996)
For any triangle-free graph G of maximum degree ∆,

χ(G) = O
Å

∆

log∆

ã

Theorem (Molloy, 2017

Bernshteyn, Brazelton, Cao, and Kang, 2021
Pirot and Hurley, 2021
Martinsson, 2021

)
For any triangle-free graph G of maximum degree ∆,

χ(G) ≤ (1 + o(1)) ∆

log∆

Tight up to a factor 2

15



Johanson-Molloy

Theorem (Johanson, 1996)
For any triangle-free graph G of maximum degree ∆,

χ(G) = O
Å

∆

log∆

ã
Theorem (Molloy, 2017

Bernshteyn, Brazelton, Cao, and Kang, 2021
Pirot and Hurley, 2021
Martinsson, 2021

)
For any triangle-free graph G of maximum degree ∆,

χ(G) ≤ (1 + o(1)) ∆

log∆

Tight up to a factor 2

15



Johanson-Molloy

Theorem (Johanson, 1996)
For any triangle-free graph G of maximum degree ∆,

χ(G) = O
Å

∆

log∆

ã
Theorem (Molloy, 2017

Bernshteyn, Brazelton, Cao, and Kang, 2021
Pirot and Hurley, 2021
Martinsson, 2021

)
For any triangle-free graph G of maximum degree ∆,

χ(G) ≤ (1 + o(1)) ∆

log∆

Tight up to a factor 2
15



Johanson-Molloy

Theorem (Johanson, 1996)
For any triangle-free graph G of maximum degree ∆,

χ(G) = O
Å

∆

log∆

ã
Theorem (Molloy, 2017
Bernshteyn, Brazelton, Cao, and Kang, 2021

Pirot and Hurley, 2021
Martinsson, 2021

)
For any triangle-free graph G of maximum degree ∆,

χ(G) ≤ (1 + o(1)) ∆

log∆

Tight up to a factor 2
15



Johanson-Molloy

Theorem (Johanson, 1996)
For any triangle-free graph G of maximum degree ∆,

χ(G) = O
Å

∆

log∆

ã
Theorem (Molloy, 2017
Bernshteyn, Brazelton, Cao, and Kang, 2021
Pirot and Hurley, 2021

Martinsson, 2021

)
For any triangle-free graph G of maximum degree ∆,

χ(G) ≤ (1 + o(1)) ∆

log∆

Tight up to a factor 2
15



Johanson-Molloy

Theorem (Johanson, 1996)
For any triangle-free graph G of maximum degree ∆,

χ(G) = O
Å

∆

log∆

ã
Theorem (Molloy, 2017
Bernshteyn, Brazelton, Cao, and Kang, 2021
Pirot and Hurley, 2021
Martinsson, 2021)
For any triangle-free graph G of maximum degree ∆,

χ(G) ≤ (1 + o(1)) ∆

log∆

Tight up to a factor 2
15



Other results

Applications to:

• SAT formulas,

• Nonrepetitive colorings,
• proper coloring of triangle free-graphs,
• Frugal coloring, star-colorings, many graph colorings
• combinatorics on words (!!!),
• tilings,
• group theory,
• ...
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Wanless and Wood framework

Theorem (Wanless and Wood, 2020)
Let (G,B) be an instance. Assume there exist a real number β ≥ 1
and an integer c ≥ 1 such that for every vertex v of G,

c ≥ β +
∑
k≥0

β−kEk(v) .

Then G is (B, c)-choosable. Moreover, for every c-list assignment L
of G,

P(G,B, L) ≥ β|V(G)| .
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The counting argument

• Is easier to use than entropy compression (and provides lower
bounds on the number of solutions)

• Frequently easier to use than LLL and frequently provide better
bounds than LLL

• It seems that it is a particular case of the Local Cut Lemma, but
it is much easier to use

• In combinatorics on words, can be coupled with other
techniques to provide really strong results

Try to apply it to your favorite problem =)
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Thanks !
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