A simple counting argument

Matthieu Rosenfeld

November 23, 2023

Local Lemmas and others

Probabilistic method (Erdős):

 ${\tt Probabilistic argument} \implies {\tt deterministic result}$

Probabilistic method (Erdős):

Probabilistic argument \implies deterministic result

Lovász Local Lemma (1975)

Let A_1, \ldots, A_k be events such that each event has probability at most p and depends on at most d other events. If

 $\textit{epd} \leq 1$

then the probability that no events occur is non-zero.

Probabilistic method (Erdős):

Probabilistic argument \implies deterministic result

Lovász Local Lemma (1975)

Let A_1, \ldots, A_k be events such that each event has probability at most p and depends on at most d other events. If

 $epd \leq 1$

then the probability that no events occur is non-zero.

Theorem

Let ϕ be a k-SAT formula. If every variable belongs to at most $\frac{2^{k}}{ke}$ clauses then ϕ is satisfiable.

Under LLL assumptions, there is a randomized algorithm that finds a satisfying assignment in expected polynomial time.

 \implies Entropy Compression

Under LLL assumptions, there is a randomized algorithm that finds a satisfying assignment in expected polynomial time.

 \implies Entropy Compression

 \implies improvement of many bounds previously obtained by the LLL (SAT, graph or hypergraph colorings, combinatorics on words...)

Under LLL assumptions, there is a randomized algorithm that finds a satisfying assignment in expected polynomial time.

\implies Entropy Compression

 \implies improvement of many bounds previously obtained by the LLL (SAT, graph or hypergraph colorings, combinatorics on words...)

Other techniques: Local-cut Lemma, Cluster-expansion (from statistical physics)...

Under LLL assumptions, there is a randomized algorithm that finds a satisfying assignment in expected polynomial time.

\implies Entropy Compression

 \implies improvement of many bounds previously obtained by the LLL (SAT, graph or hypergraph colorings, combinatorics on words...)

Other techniques: Local-cut Lemma, Cluster-expansion (from statistical physics)...

[**Rosenfeld**, 2020] Counting argument: this talk

A first example: proper hypergraph colorings

A coloring of the vertices of *H* is **proper** if no edge is monochromatic.

The **chromatic number** $\chi(H)$ is the minimum of colors in a proper coloring of *H*.

A coloring of the vertices of *H* is **proper** if no edge is monochromatic.

The **chromatic number** $\chi(H)$ is the minimum of colors in a proper coloring of *H*.

The **degree** of a vertex *v* is the number of edges that contain *v*.

A coloring of the vertices of *H* is **proper** if no edge is monochromatic.

The **chromatic number** $\chi(H)$ is the minimum of colors in a proper coloring of *H*.

The **degree** of a vertex *v* is the number of edges that contain *v*. An hypergraph if *r*-**regular** if every edge is of size *r*. Intuitively: smaller degree or larger edges \implies easier to color

Intuitively: smaller degree or larger edges \implies easier to color

Theorem

Let $\beta \geq$ 1. Let H be a r-uniform hypergraph of maximum degree Δ ,

$$\chi(\mathbf{H}) \leq \left\lceil \beta + \frac{\Delta}{\beta^{r-2}} \right\rceil$$
.

Intuitively: smaller degree or larger edges \implies easier to color

Theorem

Let $\beta \geq$ 1. Let H be a r-uniform hypergraph of maximum degree Δ ,

$$\chi(\mathbf{H}) \leq \left\lceil \beta + \frac{\Delta}{\beta^{r-2}} \right\rceil \,.$$

Let $c = \left[\beta + \frac{\Delta}{\beta^{r-2}}\right]$ and C(H) be # proper c-coloring of H.

Intuitively: smaller degree or larger edges \implies easier to color

Theorem

Let $\beta \geq$ 1. Let H be a r-uniform hypergraph of maximum degree Δ ,

$$\chi(\mathbf{H}) \leq \left\lceil eta + \frac{\Delta}{eta^{\mathbf{r}-\mathbf{2}}} \right\rceil \,.$$

Let $c = \left\lceil \beta + \frac{\Delta}{\beta^{r-2}} \right\rceil$ and C(H) be # proper c-coloring of H.

Lemma

Let H be a r-uniform hypergraph of maximum degree Δ , then $\forall v \in V(H), \quad C(H) \ge \beta C(H - v).$

Intuitively: smaller degree or larger edges \implies easier to color

Theorem

Let $\beta \geq$ 1. Let H be a r-uniform hypergraph of maximum degree Δ ,

$$\chi(\mathbf{H}) \leq \left\lceil eta + \frac{\Delta}{eta^{\mathbf{r}-\mathbf{2}}} \right\rceil \,.$$

Let $c = \left[\beta + \frac{\Delta}{\beta^{r-2}}\right]$ and C(H) be # proper *c*-coloring of *H*.

Lemma

Let H be a r-uniform hypergraph of maximum degree Δ , then $\forall v \in V(H), \quad C(H) \ge \beta C(H - v).$

Proof of the Theorem: By induction, $C(H) \ge \beta^{|H|}$

Induction hypothesis implies: $\forall S \subseteq V(H - v), \quad C(H - v - S) \leq \frac{C(H - v)}{\beta^{|S|}}$

Induction hypothesis implies: $\forall S \subseteq V(H-v), \quad C(H-v-S) \leq \frac{C(H-v)}{\beta^{|S|}}$

A coloring of V(H) is bad, if it is proper on H - v, but not on H.

Induction hypothesis implies: $\forall S \subseteq V(H-v), \quad C(H-v-S) \leq \frac{C(H-v)}{\beta^{|S|}}$

A coloring of V(H) is bad, if it is proper on H - v, but not on H.

 $C(H) \ge c \cdot C(H - v) - \# \{ \text{bad colorings} \}$

Induction hypothesis implies: $\forall S \subseteq V(H-v), \quad C(H-v-S) \leq \frac{C(H-v)}{\beta^{|S|}}$

A coloring of V(H) is bad, if it is proper on H - v, but not on H.

 $C(H) \ge c \cdot C(H - v) - \# \{ \text{bad colorings} \}$

Induction hypothesis implies: $\forall S \subseteq V(H-v), \quad C(H-v-S) \leq \frac{C(H-v)}{\beta^{|S|}}$

A coloring of V(H) is bad, if it is proper on H - v, but not on H.

 $C(H) \ge c \cdot C(H - v) - \#\{\text{bad colorings}\}$

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.

 $\#\{\text{bad colorings}\} \le \sum_{e \sim v} \#\{e\text{-bad colorings}\}$

Induction hypothesis implies: $\forall S \subseteq V(H-v), \quad C(H-v-S) \leq \frac{C(H-v)}{\beta^{|S|}}$

A coloring of V(H) is bad, if it is proper on H - v, but not on H.

 $C(H) \ge c \cdot C(H - v) - \# \{ \text{bad colorings} \}$

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.

$$\#\{bad \ colorings\} \le \sum_{e \sim v} \#\{e\text{-bad} \ colorings\}$$

Let $w \in e \setminus v$, then

Induction hypothesis implies: $\forall S \subseteq V(H-v), \quad C(H-v-S) \leq \frac{C(H-v)}{\beta^{|S|}}$

A coloring of V(H) is bad, if it is proper on H - v, but not on H.

 $C(H) \ge c \cdot C(H - v) - \# \{ \text{bad colorings} \}$

For each edge $e \sim v$, a bad c-coloring of H is e-bad, if it is monochromatic on e.

$$\#\{bad \ colorings\} \le \sum_{e \sim v} \#\{e\text{-bad} \ colorings\}$$

Let $w \in e \setminus v$, then

Induction hypothesis implies: $\forall S \subseteq V(H-v), \quad C(H-v-S) \leq \frac{C(H-v)}{\beta^{|S|}}$

A coloring of V(H) is bad, if it is proper on H - v, but not on H.

 $C(H) \ge c \cdot C(H - v) - \# \{ \text{bad colorings} \}$

For each edge $e \sim v$, a bad c-coloring of H is e-**bad**, if it is monochromatic on e.

$$\#\{bad \ colorings\} \le \sum_{e \sim v} \#\{e-bad \ colorings\}$$

Let $w \in e \setminus v$, then

 $\#\{e\text{-bad colorings}\} \leq C(H - (e \setminus w))$

Induction hypothesis implies: $\forall S \subseteq V(H - v), \quad C(H - v - S) \leq \frac{C(H - v)}{\beta^{|S|}}$

A coloring of V(H) is bad, if it is proper on H - v, but not on H.

 $C(H) \ge c \cdot C(H - v) - \# \{ \text{bad colorings} \}$

For each edge $e \sim v$, a bad *c*-coloring of *H* is *e*-**bad**, if it is monochromatic on *e*.

$$\#\{bad \ colorings\} \le \sum_{e \sim v} \#\{e\text{-bad colorings}\}$$

Let $w \in e \setminus v$, then

$$\#\{e\text{-bad colorings}\} \leq C(H - (e \setminus w)) \leq \frac{C(H - v)}{\beta^{r-2}}$$

Induction hypothesis implies: $\forall S \subseteq V(H - v), \quad C(H - v - S) \leq \frac{C(H - v)}{\beta^{|S|}}$

A coloring of V(H) is bad, if it is proper on H - v, but not on H.

 $C(H) \ge c \cdot C(H - v) - \# \{ bad colorings \}$

Induction hypothesis implies: $\forall S \subseteq V(H - v), \quad C(H - v - S) \leq \frac{C(H - v)}{\beta^{|S|}}$

A coloring of V(H) is bad, if it is proper on H - v, but not on H.

 $C(H) \ge c \cdot C(H-v) - \# \{ \text{bad colorings} \} \ge c \cdot C(H-v) - \Delta \frac{C(H-v)}{\beta r-2}$

Induction hypothesis implies: $\forall S \subseteq V(H - v), \quad C(H - v - S) \leq \frac{C(H - v)}{\beta^{|S|}}$

A coloring of V(H) is bad, if it is proper on H - v, but not on H.

 $C(H) \ge c \cdot C(H - v) - \# \{ \text{bad colorings} \} \ge c \cdot C(H - v) - \Delta \frac{C(H - v)}{\beta^{r-2}}$

$$\begin{aligned} \# \{ \text{bad colorings} \} &\leq \sum_{e \sim v} \# \{ e \text{-bad colorings} \} \leq \Delta \frac{\mathcal{C}(H - v)}{\beta^{r-2}} & \bullet v \\ \text{Let } w \in e \setminus v \text{, then} \\ \# \{ e \text{-bad colorings} \} &\leq \mathcal{C}(H - (e \setminus w)) \leq \frac{\mathcal{C}(H - v)}{\beta^{r-2}} & \bullet v \\ \text{Finally,} \quad \mathcal{C}(H) \geq \left(c - \frac{\Delta}{\beta^{r-2}} \right) \mathcal{C}(H - v) \end{aligned}$$

Induction hypothesis implies: $\forall S \subseteq V(H - v), \quad C(H - v - S) \leq \frac{C(H - v)}{\beta^{|S|}}$

A coloring of V(H) is bad, if it is proper on H - v, but not on H.

 $\mathcal{C}(H) \geq c \cdot \mathcal{C}(H - v) - \#\{\text{bad colorings}\} \geq c \cdot \mathcal{C}(H - v) - \Delta \frac{\mathcal{C}(H - v)}{\beta^{r-2}}$

$$\begin{aligned} \# \{ \text{bad colorings} \} &\leq \sum_{e \sim v} \# \{ e \text{-bad colorings} \} \leq \Delta \frac{\mathcal{C}(H - v)}{\beta^{r-2}} & \downarrow v \\ \text{Let } w \in e \setminus v \text{, then} \\ \# \{ e \text{-bad colorings} \} &\leq \mathcal{C}(H - (e \setminus w)) \leq \frac{\mathcal{C}(H - v)}{\beta^{r-2}} & \downarrow v \\ \text{Finally,} \quad \mathcal{C}(H) \geq \left(c - \frac{\Delta}{\beta^{r-2}} \right) \mathcal{C}(H - v) \geq \beta \mathcal{C}(H - v) \quad \Box \end{aligned}$$

Lemma

Let H be an r-regular hypergraph of maximum degree Δ . Then

$$\chi(H) \leq \mathbf{c} := \min_{\beta > \mathbf{o}} \left\lceil \beta + \frac{\Delta}{\beta^{r-2}} \right\rceil \,.$$

Lemma

Let H be an r-regular hypergraph of maximum degree Δ . Then

$$\chi(H) \leq \mathsf{c} := \min_{\beta > \mathsf{o}} \left\lceil \beta + \frac{\Delta}{\beta^{r-2}} \right\rceil$$

Moreover, the number of proper c-coloring of H is at least $\beta^{|V(H)|}$.

Lemma

Let H be an r-regular hypergraph of maximum degree \triangle . Then

$$\chi(H) \le \mathsf{c} := \min_{\beta > \mathsf{o}} \left\lceil \beta + \frac{\Delta}{\beta^{r-2}} \right\rceil$$

Moreover, the number of proper c-coloring of H is at least $\beta^{|V(H)|}$.

Theorem (Wanless and Wood, 2020)

Let r > 2. Let H be a r-uniform hypergraph of maximum degree Δ ,

$$\chi(H) \leq \left\lceil \left(\frac{r-1}{r-2}\right) ((r-2)\Delta)^{1/(r-1)} \right\rceil$$

Asymptotically optimal. Slightly better than [Erdős and Lovász, 1975]

Lemma

Let H be an r-regular hypergraph of maximum degree \triangle . Then

$$\chi(H) \le \mathsf{c} := \min_{\beta > \mathsf{o}} \left\lceil \beta + \frac{\Delta}{\beta^{r-2}} \right\rceil$$

Moreover, the number of proper c-coloring of H is at least $\beta^{|V(H)|}$.

Theorem (Wanless and Wood, 2020)

Let r > 2. Let H be a r-uniform hypergraph of maximum degree Δ ,

$$\chi(H) \leq \left\lceil \left(\frac{r-1}{r-2}\right) \left((r-2)\Delta\right)^{1/(r-1)} \right\rceil$$

Asymptotically optimal. Slightly better than [Erdős and Lovász, 1975]

Remark: For the chromatic number of graphs (2-regular hypergraph), we have $c = \Delta + 1$.

A second example: Star coloring

A star coloring of a graph G is a proper coloring such that any pair of color classes induces a forest of stars.

A star coloring of a graph G is a proper coloring such that any pair of color classes induces a forest of stars.

A star coloring of a graph G is a proper coloring such that any pair of color classes induces a forest of stars.

A star coloring of a graph G is a proper coloring such that any pair of color classes induces a forest of stars.

A star coloring of a graph G is a proper coloring such that any pair of color classes induces a forest of stars.

A star coloring of a graph G is a proper coloring such that any pair of color classes induces a forest of stars.

A star coloring of a graph *G* is a proper coloring such that any pair of color classes induces a forest of stars.

Equivalently: A star coloring of a graph G is a proper coloring such that no p_4 is bi-chromatic.

 $\chi_{\rm s}({\rm G})$ is the minimum number of colors in a star coloring of ${\rm G}$

Theorem (Fertin, Raspaud, and Reed, 2004)

 $\chi_{\rm S}({\rm G}) \leq$ 20 $\Delta^{3/2}$

Theorem (Fertin, Raspaud, and Reed, 2004)

 $\chi_{s}(G) \leq 20\Delta^{3/2}$

Theorem (Ndreca, Procacci, and Scoppola, 2012)

 $\chi_{
m S}(
m G) \leq$ 4.34 $\Delta^{3/2}$ + 1.5 Δ

Theorem (Fertin, Raspaud, and Reed, 2004)

 $\chi_{\sf S}({\sf G}) \leq 20\Delta^{3/2}$

Theorem (Ndreca, Procacci, and Scoppola, 2012)

 $\chi_{s}(G) \leq 4.34 \Delta^{3/2} + 1.5 \Delta$

Theorem (Esperet, and Parreau, 2013)

 $\chi_{s}(G) \leq \left\lceil 2\sqrt{2}\Delta^{3/2} + \Delta \right\rceil$

Theorem (Fertin, Raspaud, and Reed, 2004 LLL)

 $\chi_{\sf s}({\sf G}) \leq$ 20 $\Delta^{3/2}$

Theorem (Ndreca, Procacci, and Scoppola, 2012 LLL)

 $\chi_{s}(\mathsf{G}) \leq 4.34 \Delta^{3/2} + 1.5 \Delta$

Theorem (Esperet, and Parreau, 2013 Entropy Compression)

 $\chi_{s}(G) \leq \left\lceil 2\sqrt{2}\Delta^{3/2} + \Delta \right\rceil$

Lemma

For any graph G of maximum degree Δ and any $v \in V(G),$ the number of p_4 that contains v is at most,

Lemma

For any graph G of maximum degree Δ and any $v \in V(G),$ the number of p_4 that contains v is at most,

Lemma

For any graph G of maximum degree Δ and any $v \in V(G),$ the number of p_4 that contains v is at most,

Lemma

For any graph G of maximum degree Δ and any $v \in V(G),$ the number of p_4 that contains v is at most,

Lemma

For any graph G of maximum degree Δ and any $v \in V(G),$ the number of p_4 that contains v is at most,

Lemma

For any graph G of maximum degree Δ and any $v \in V(G),$ the number of p_4 that contains v is at most,

In total: $\leq \Delta^3$ choices

Lemma

For any graph G of maximum degree Δ and any $v \in V(G),$ the number of p_4 that contains v is at most,

In total: $\leq \Delta^3$ choices

Lemma

For any graph G of maximum degree Δ and any $v \in V(G),$ the number of p_4 that contains v is at most,

In total: $\leq \Delta^3$ choices

Lemma

For any graph G of maximum degree Δ and any $v \in V(G),$ the number of p_4 that contains v is at most,

In total: $\leq \Delta^3$ choices

Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$, the number of p4 that contains v is at most,

Lemma

For any graph G of maximum degree Δ and any $v \in V(G),$ the number of p_4 that contains v is at most,

 $|\{p|p \text{ is a } p_4, v \in p\}| \le 2\Delta^3$.

In total: $\leq 2\Delta^3$ choices

Star coloring: with the counting argument

Theorem (This talk)

$$\chi_{\mathsf{s}}(\mathsf{G}) \leq \left\lceil 2\sqrt{2}\Delta^{3/2} + \Delta \right\rceil$$

Star coloring: with the counting argument

Theorem (This talk)

$$\chi_{\mathsf{s}}(\mathsf{G}) \leq \left\lceil 2\sqrt{2}\Delta^{3/2} + \Delta \right\rceil$$

Let $c = \left\lceil 2\sqrt{2}\Delta^{3/2} + \Delta \right\rceil$.

We let $C_s(G)$ be the number of star c-colorings of G.

Let β such that $c - \Delta - \frac{2\Delta^3}{\beta} \ge \beta$.

Star coloring: with the counting argument

Theorem (This talk)

$$\chi_{\mathsf{s}}(\mathsf{G}) \leq \left\lceil 2\sqrt{2}\Delta^{3/2} + \Delta \right\rceil$$

Let $c = \left\lceil 2\sqrt{2}\Delta^{3/2} + \Delta \right\rceil$.

We let $C_s(G)$ be the number of star *c*-colorings of *G*.

Let
$$\beta$$
 such that $c - \Delta - \frac{2\Delta^3}{\beta} \ge \beta$.

Theorem is a corollary of:

Lemma

For any graph G of maximum degree Δ and any $v \in V(G)$,

 $C_{s}(G) \geq \beta C_{s}(G - V)$.

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

A proper-coloring of V(G) is *bad*, if the restriction to V(G - v) is a star coloring, but not the restriction to V(G).

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

A proper-coloring of V(G) is *bad*, if the restriction to V(G - v) is a star coloring, but not the restriction to V(G).

 $\mathcal{C}_{s}(G) \geq (c - \Delta) \cdot \mathcal{C}_{s}(G - v) - \# \{ bad \ col. \}$

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

A proper-coloring of V(G) is *bad*, if the restriction to V(G - v) is a star coloring, but not the restriction to V(G).

 $C_s(G) \ge (c - \Delta) \cdot C_s(G - v) - \# \{bad col.\}$

For all path p of length 4 with $v \in p$, a bad coloring of V(G) is p-bad, if p is bichromatic.

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

A proper-coloring of V(G) is *bad*, if the restriction to V(G - v) is a star coloring, but not the restriction to V(G).

 $C_s(G) \ge (c - \Delta) \cdot C_s(G - v) - \# \{bad col.\}$

For all path p of length 4 with $v \in p$, a bad coloring of V(G) is p-bad, if p is bichromatic.

 $|\{\text{bad col.}\}| \leq \sum_{\substack{p \in P_4 \\ v \in p}} |\{p\text{-bad col.}\}|$

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

A proper-coloring of V(G) is *bad*, if the restriction to V(G - v) is a star coloring, but not the restriction to V(G).

 $C_s(G) \ge (c - \Delta) \cdot C_s(G - v) - \# \{bad col.\}$

For all path p of length 4 with $v \in p$, a bad coloring of V(G) is p-bad, if p is bichromatic.

 $|\{ \mathsf{bad col.}\}| \leq \sum_{\substack{p \in \mathcal{P}_4 \ v \in p}} |\{p \text{-bad col.}\}|$

Let $u \in N(v) \cap p$, then

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

A proper-coloring of V(G) is *bad*, if the restriction to V(G - v) is a star coloring, but not the restriction to V(G).

 $C_s(G) \ge (c - \Delta) \cdot C_s(G - v) - \# \{bad col.\}$

For all path p of length 4 with $v \in p$, a bad coloring of V(G) is p-bad, if p is bichromatic.

 $|\{ \mathsf{bad col.}\}| \leq \sum_{\substack{p \in \mathcal{P}_4 \ v \in p}} |\{p \text{-bad col.}\}|$

Let $u \in N(v) \cap p$, then

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

A proper-coloring of V(G) is *bad*, if the restriction to V(G - v) is a star coloring, but not the restriction to V(G).

 $\mathcal{C}_{s}(G) \geq (c - \Delta) \cdot \mathcal{C}_{s}(G - v) - \# \{ bad col. \}$

For all path p of length 4 with $v \in p$, a bad coloring of V(G) is p-bad, if p is bichromatic.

$$|\{ \mathsf{bad col.}\}| \leq \sum_{\substack{p \in P_4 \ v \in p}} |\{p \text{-bad col.}\}|$$

Let $u \in N(v) \cap p$, then

 $|\{p\text{-bad col.}\}| \leq C_s(G - v - u)$

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

A proper-coloring of V(G) is *bad*, if the restriction to V(G - v) is a star coloring, but not the restriction to V(G).

 $C_s(G) \ge (c - \Delta) \cdot C_s(G - v) - \# \{bad col.\}$

For all path p of length 4 with $v \in p$, a bad coloring of V(G) is p-bad, if p is bichromatic.

$$|\{\text{bad col.}\}| \leq \sum_{\substack{p \in P_4 \\ v \in p}} |\{p\text{-bad col.}\}|$$

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

A proper-coloring of V(G) is *bad*, if the restriction to V(G - v) is a star coloring, but not the restriction to V(G).

$$C_s(G) \ge (c - \Delta) \cdot C_s(G - v) - \# \{bad col.\}$$

For all path p of length 4 with $v \in p$, a bad coloring of V(G) is p-bad, if p is bichromatic.

$$|\{\text{bad col.}\}| \leq \sum_{\substack{p \in P_4 \ v \in p}} |\{p\text{-bad col.}\}| \leq 2\Delta^3 \frac{\mathcal{C}_{\mathsf{s}}(\mathsf{G}-\mathsf{v})}{\beta}$$

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

A proper-coloring of V(G) is *bad*, if the restriction to V(G - v) is a star coloring, but not the restriction to V(G).

 $\mathcal{C}_{s}(G) \geq (c - \Delta) \cdot \mathcal{C}_{s}(G - v) - \# \{ \text{bad col.} \} \geq c \cdot \mathcal{C}_{s}(G - v) - 2\Delta^{3} \frac{\mathcal{C}_{s}(G - v)}{\beta}$

For all path p of length 4 with $v \in p$, a bad coloring of V(G) is p-bad, if p is bichromatic.

$$|\{\text{bad col.}\}| \leq \sum_{\substack{p \in P_4 \\ v \in p}} |\{p\text{-bad col.}\}| \leq 2\Delta^3 \frac{\mathcal{C}_s(G - v)}{\beta}$$

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

A proper-coloring of V(G) is *bad*, if the restriction to V(G - v) is a star coloring, but not the restriction to V(G).

 $\mathcal{C}_{s}(G) \geq (c - \Delta) \cdot \mathcal{C}_{s}(G - v) - \# \{ \text{bad col.} \} \geq c \cdot \mathcal{C}_{s}(G - v) - 2\Delta^{3} \frac{\mathcal{C}_{s}(G - v)}{\beta}$

For all path p of length 4 with $v \in p$, a bad coloring of V(G) is p-bad, if p is bichromatic.

$$|\{\text{bad col.}\}| \leq \sum_{\substack{p \in P_4 \\ v \in p}} |\{p\text{-bad col.}\}| \leq 2\Delta^3 \frac{\mathcal{C}_s(G-v)}{\beta}$$

Let $u \in N(v) \cap p$, then $|\{p\text{-bad col.}\}| \leq C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

Finally,
$$\mathcal{C}_{\mathsf{s}}(\mathsf{G}) \geq \left(\mathsf{c} - \Delta - \frac{2\Delta^3}{\beta}\right) \mathcal{C}_{\mathsf{s}}(\mathsf{G} - \mathsf{v})$$

12

Induction hypothesis implies: $\forall u \in V(G - v), \quad C_s(G - v - u) \leq \frac{C_s(G - v)}{\beta}$

A proper-coloring of V(G) is *bad*, if the restriction to V(G - v) is a star coloring, but not the restriction to V(G).

 $\mathcal{C}_{s}(G) \geq (c - \Delta) \cdot \mathcal{C}_{s}(G - v) - \# \{ \text{bad col.} \} \geq c \cdot \mathcal{C}_{s}(G - v) - 2\Delta^{3} \frac{\mathcal{C}_{s}(G - v)}{\beta}$

For all path p of length 4 with $v \in p$, a bad coloring of V(G) is p-bad, if p is bichromatic.

$$|\{\text{bad col.}\}| \leq \sum_{\substack{p \in P_4 \\ v \in p}} |\{p\text{-bad col.}\}| \leq 2\Delta^3 \frac{\mathcal{C}_s(G-v)}{\beta}$$

Finally,
$$C_{s}(G) \geq \left(c - \Delta - \frac{2\Delta^{3}}{\beta}\right) C_{s}(G - \nu) \geq \beta C_{s}(G - \nu) \quad \Box$$
 12

Theorem

Let G be a graph of maximum degree Δ , then

$$\chi_{\mathsf{s}}(\mathsf{G}) \leq \min_{\beta > \mathsf{o}} \left[\Delta + \beta + \frac{2\Delta^3}{\beta} \right]$$

Theorem

Let G be a graph of maximum degree Δ , then

$$\chi_{\mathsf{s}}(\mathsf{G}) \leq \min_{\beta > \mathsf{o}} \left\lceil \Delta + \beta + \frac{2\Delta^3}{\beta} \right\rceil = \left\lceil \Delta + 2\sqrt{2}\Delta^{3/2} \right\rceil.$$

Other applications

Problem (Vizing , 68)

If $\Delta(G)$ is the maximum degree of a vertex in a graph G, it is clear that $\chi(G) \leq \Delta(G) + 1$. [...] Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices.

Problem (Vizing , 68)

If $\Delta(G)$ is the maximum degree of a vertex in a graph G, it is clear that $\chi(G) \leq \Delta(G) + 1$. [...] Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices.

Similar problem already mentioned in the 50's by different authors (Erdős, Mycielski, Zykov...).

Theorem (Johanson, 1996)

For any triangle-free graph G of maximum degree \triangle ,

$$\chi(\mathsf{G}) = \mathsf{O}\left(\frac{\Delta}{\log\Delta}\right)$$

Theorem (Johanson, 1996)

For any triangle-free graph G of maximum degree \triangle ,

$$\chi(\mathsf{G}) = \mathsf{O}\left(\frac{\Delta}{\log \Delta}\right)$$

Theorem (Johanson, 1996)

For any triangle-free graph G of maximum degree Δ ,

$$\chi(\mathsf{G}) = \mathsf{O}\left(\frac{\Delta}{\log \Delta}\right)$$

Tight up to a factor 2

Theorem (Johanson, 1996)

For any triangle-free graph G of maximum degree \triangle ,

$$\chi(\mathsf{G}) = \mathsf{O}\left(\frac{\Delta}{\log \Delta}\right)$$

Theorem (Molloy, 2017 Bernshteyn, Brazelton, Cao, and Kang, 2021

For any triangle-free graph G of maximum degree \triangle ,

$$\chi(\mathsf{G}) \leq (\mathsf{1} + \mathsf{o}(\mathsf{1})) rac{\Delta}{\log \Delta}$$

Tight up to a factor 2

Theorem (Johanson, 1996)

For any triangle-free graph G of maximum degree \triangle ,

$$\chi(\mathbf{G}) = \mathbf{O}\left(\frac{\Delta}{\log \Delta}\right)$$

Theorem (Molloy, 2017 Bernshteyn, Brazelton, Cao, and Kang, 2021 Pirot and Hurley, 2021) For any triangle-free graph G of maximum degree △,

$$\chi(\mathsf{G}) \leq (\mathsf{1} + \mathsf{o}(\mathsf{1})) rac{\Delta}{\log \Delta}$$

Tight up to a factor 2

Theorem (Johanson, 1996)

For any triangle-free graph G of maximum degree \triangle ,

$$\chi(\mathbf{G}) = \mathbf{O}\left(\frac{\Delta}{\log \Delta}\right)$$

Theorem (Molloy, 2017 Bernshteyn, Brazelton, Cao, and Kang, 2021 Pirot and Hurley, 2021 Martinsson, 2021)

For any triangle-free graph G of maximum degree \triangle ,

$$\chi(G) \leq (1 + o(1)) \frac{\Delta}{\log \Delta}$$

• SAT formulas,

- SAT formulas,
- Nonrepetitive colorings,
- proper coloring of triangle free-graphs,
- Frugal coloring, star-colorings, many graph colorings

- SAT formulas,
- Nonrepetitive colorings,
- proper coloring of triangle free-graphs,
- Frugal coloring, star-colorings, many graph colorings
- combinatorics on words (!!!),

- SAT formulas,
- Nonrepetitive colorings,
- proper coloring of triangle free-graphs,
- Frugal coloring, star-colorings, many graph colorings
- combinatorics on words (!!!),
- tilings,
- group theory,
- ...

Theorem (Wanless and Wood, 2020)

Let (G, B) be an instance. Assume there exist a real number $\beta \ge 1$ and an integer $c \ge 1$ such that for every vertex v of G,

$$c \geq \beta + \sum_{k \geq 0} \beta^{-k} E_k(v)$$
.

Then G is (\mathcal{B}, c) -choosable. Moreover, for every c-list assignment L of G,

 $P(G, \mathcal{B}, L) \geq \beta^{|V(G)|}$.

• Is easier to use than entropy compression (and provides lower bounds on the number of solutions)

- Is easier to use than entropy compression (and provides lower bounds on the number of solutions)
- Frequently easier to use than LLL and frequently provide better bounds than LLL

The counting argument

- Is easier to use than entropy compression (and provides lower bounds on the number of solutions)
- Frequently easier to use than LLL and frequently provide better bounds than LLL
- It seems that it is a particular case of the Local Cut Lemma, but it is much easier to use

The counting argument

- Is easier to use than entropy compression (and provides lower bounds on the number of solutions)
- Frequently easier to use than LLL and frequently provide better bounds than LLL
- It seems that it is a particular case of the Local Cut Lemma, but it is much easier to use
- In combinatorics on words, can be coupled with other techniques to provide really strong results

The counting argument

- Is easier to use than entropy compression (and provides lower bounds on the number of solutions)
- Frequently easier to use than LLL and frequently provide better bounds than LLL
- It seems that it is a particular case of the Local Cut Lemma, but it is much easier to use
- In combinatorics on words, can be coupled with other techniques to provide really strong results

Try to apply it to your favorite problem =)

Thanks !