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Locating a burglar

Detectors can detect movement in their room and adjacent rooms
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 E)

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

X={v1,v2,v3,v4,v5}

B aCon ) o &={{v1},{vi,v2,v3},{vz,va},{v3,va,v5}}
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Definition - Separating set (Rényi, 1961 E)

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

Equivalently:
for any pair e, f of edges, there is a vertex in C contained in exactly one of e, f.
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 E)

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

Equivalently:
for any pair e, f of edges, there is a vertex in C contained in exactly one of e, f.

X:{V17V27V37V47V5}
aCon ) &={{w1},{vi,v2,v3},{v3,va},{v3,va,v5}}
— €=l
enC=0
esNC=0
e4ﬂC={V5}
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 E)

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

Equivalently:
for any pair e, f of edges, there is a vertex in C contained in exactly one of e, f.

X ={vi,va,v3,va,v5}
aCon ) & ={{v1},{v1,v2,v3},{v3,va},{v3,va,v5}}
— €=l
e @ etNC=0
EQQCZ{VQ}
esNC=0
e4ﬂC={V5}
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 E)

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

Equivalently:
for any pair e, f of edges, there is a vertex in C contained in exactly one of e, f.

X= {Vla V2,V3,Vva, V5}

e1 & ={{vi},{vi,va,v3},{v3,va},{v3,va,v5}}
- c=twwn}

e @ etNC=0
eNC={wv,v}

esNC={v3}
esNC= {V3,V5}
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 E)

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

Equivalently:

for any pair e, f of edges, there is a vertex in C contained in exactly one of e, f.
ov, X ={v1,v2,v3,v4,V5}
el@ & = {{V]_},{V]_,Vz,V3},{V3,V4},{V3,V4,V5}}
— €=lmm)
SRR
e2NC={vi,v3}
esNC={v3}
e4ﬂC={V3,V5}
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 E)

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

Equivalently:
for any pair e, f of edges, there is a vertex in C contained in exactly one of e, f.

X= {Vla V2,V3,Vva, V5}

e1® & ={{vi},{vi,va,v3},{v3,va},{v3,va,v5}}
- — €=l

eNC={v,vs}
esNC={v3}
e4ﬂC={V3,V5}

Also known as Separating system, Distinguishing set, Test cover, Distinguishing
transversal, Discriminating code...
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Applications

o network-monitoring, fault detection (burglar)

e medical diagnostics: testing samples for diseases (test cover)

@ biological identification (attributes of individuals)

@ learning theory: teaching dimension

@ machine learning: V-C dimension (Vapnik, Cervonenkis, 1971)

@ graph isomorphism: canonical representation of graphs (Babai, 1982)

o logic definability of graphs (Kim, Pikhurko, Spencer, Verbitsky, 2005)
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&), a separating set C has size at least log,(|£)).

Proof: Must assign to each edge, a distinct subset of C: |&] < 2lcl, O
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&), a separating set C has size at least log,(|£)).

Proof: Must assign to each edge, a distinct subset of C: |&] < 2lcl, O

7

Theorem (Bondy's theorem, 1972 ‘)

A minimal separating set of hypergraph (X,&) has size at most |&|— 1.
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&), a separating set C has size at least log,(|£)).

Proof: Must assign to each edge, a distinct subset of C: |&] < 2lcl, O

7

Theorem (Bondy's theorem, 1972 ‘)

A minimal separating set of hypergraph (X,&) has size at most |&|— 1.

Proof:
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&), a separating set C has size at least log,(|£)).

Proof: Must assign to each edge, a distinct subset of C: |&] < 2lcl, O

7

Theorem (Bondy's theorem, 1972 ‘)

A minimal separating set of hypergraph (X,&) has size at most |&|— 1.

Proof:

Which are the “problematic” vertices?
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&), a separating set C has size at least log,(|£)).

Proof: Must assign to each edge, a distinct subset of C: |&] < 2lcl, O

7

Theorem (Bondy's theorem, 1972 ‘)

A minimal separating set of hypergraph (X,&) has size at most |&|— 1.

Proof:
e, Build graph G on vertex set V(G) =&
e; ®
.
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&), a separating set C has size at least log,(|£)).

Proof: Must assign to each edge, a distinct subset of C: |&] < 2lcl, O

7

Theorem (Bondy's theorem, 1972 ‘)

A minimal separating set of hypergraph (X,&) has size at most |&|— 1.

Proof:

X e, Build graph G on vertex set V(G) =&
€ Join ¢; to ¢; iff & = ¢; U {x} for some x € X,
label it “x”
X ®€s
€m
X ey

€s
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&), a separating set C has size at least log,(|£)).

Proof: Must assign to each edge, a distinct subset of C: |&] < 2lcl, O

7

Theorem (Bondy's theorem, 1972 ‘)

A minimal separating set of hypergraph (X,&) has size at most |&|— 1.

Proof:

x e, Build graph G on vertex set V(G) =&

! Join ¢ to ¢; iff e = ;U {x} for some x € X,
b label it “x”
y
€3
€m z
X €,
(513 y
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&), a separating set C has size at least log,(|£)).

Proof: Must assign to each edge, a distinct subset of C: |&] < 2lcl, O

7

Theorem (Bondy's theorem, 1972 ‘)

A minimal separating set of hypergraph (X,&) has size at most |&|— 1.

Proof:
x e, Build graph G on vertex set V(G) =&
! Join ¢ to ¢; iff e = ;U {x} for some x € X,
label it “x”
y If an edge labeled x appears multiple times,
€3 keep only one of them.
en z This destroys all cycles in G! — forest
€4
°
€s
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&), a separating set C has size at least log,(|£)).

Proof: Must assign to each edge, a distinct subset of C: |&] < 2lcl, O

7

Theorem (Bondy's theorem, 1972 ‘)

A minimal separating set of hypergraph (X,&) has size at most |&|— 1.

Proof:
x e, Build graph G on vertex set V(G) =&
! Join ¢ to ¢; iff e = ;U {x} for some x € X,
label it “x”
y If an edge labeled x appears multiple times,
€3 keep only one of them.
en z This destroys all cycles in G! — forest
€4 So, at most |&]| —1 “problematic” vertices.
e. — Find “non-problematic vertex”, omit it. O
5
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Some example problems

Special cases of separating sets in hypergraphs (graph-based):
@ identifying codes
@ open identifying codes

@ path/cycle identifying covers, separating path systems
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Some example problems
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@ locating-total dominating sets

Florent Foucaud Identification problems in graphs 7/37



Some example problems

Special cases of separating sets in hypergraphs (graph-based):
@ identifying codes
@ open identifying codes
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A variation:
@ locating-dominating sets

@ locating-total dominating sets

Geometric versions: e.g. seperating points using disks in Euclidean space
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Some example problems

Special cases of separating sets in hypergraphs (graph-based):
@ identifying codes
@ open identifying codes

@ path/cycle identifying covers, separating path systems

A variation:
@ locating-dominating sets

@ locating-total dominating sets

Geometric versions: e.g. seperating points using disks in Euclidean space
Distance-based identification:

@ resolving sets (metric dimension)

@ strongly resolving sets
@ centroidal locating sets
°

tracking paths problem
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Some example problems

Special cases of separating sets in hypergraphs (graph-based):
@ identifying codes
@ open identifying codes

@ path/cycle identifying covers, separating path systems

A variation:
@ locating-dominating sets

@ locating-total dominating sets

Geometric versions: e.g. seperating points using disks in Euclidean space
Distance-based identification:

@ resolving sets (metric dimension)

@ strongly resolving sets
@ centroidal locating sets
°

tracking paths problem

Coloring-based identification
@ Adjacent vertex-distinguishing edge-coloring
@ locally identifying coloring
@ locating coloring

@ neighbor-locating coloring
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Florent Foucaud

Open identifying codes in graphs

(a.k.a. open locating-dominating sets)

Identification problems in graphs
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Open identifying codes

G: undirected graph  N(u): set of neighbours of v

7

Definition - open identifying code (Seo, Slater, 2010 2 ﬂ)

Subset D of V(G) such that:
e D is a total dominating set: Yu € V(G), N(u)ND # 0, and

e D is a separating code: Vu # v of V(G), N(u)NnD # N(v)ND

Notation. O/D(G): open identifying code number of G,
minimum size of an open identifying code in G

{b} | | {b.f} | {d}

{b,d}
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Open identifying codes

G: undirected graph  N(u): set of neighbours of v

7

Definition - open identifying code (Seo, Slater, 2010 2 ﬂ)

Subset D of V(G) such that:
e D is a total dominating set: Yu € V(G), N(u)ND # 0, and

e D is a separating code: Vu # v of V(G), N(u)NnD # N(v)ND

Notation. O/D(G): open identifying code number of G,
minimum size of an open identifying code in G

Separating code of G = separating set of open neighbourhood hypergraph of G
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Locatable graphs

Remark

Not all graphs have an open identifying code!

An isolated vertex cannot be totally dominated.
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Locatable graphs

Remark

Not all graphs have an open identifying code!

An isolated vertex cannot be totally dominated.

Open twins = pair u, v such that N(u) = N(v).
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Locatable graphs

Remark
Not all graphs have an open identifying code!
An isolated vertex cannot be totally dominated.
Open twins = pair u, v such that N(u) = N(v).
Proposition

A graph is locatable if and only if it has no isolated vertices and open twins.

Florent Foucaud Identification problems in graphs 10 / 37



Lower bound on OID(G)

Definition - open identifying code]

Subset D of V/(G) such that:
e D is a total dominating set: Yu € V(G), N(u)ND # 0, and
o D is a separating code: Vu # v of V(G), N(u)ND # N(v)ND

Proposition

G locatable graph on n vertices: [logy(n+1)] < OID(G). (Tight.)
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Lower bound on OID(G)

Definition - open identifying code]

Subset D of V/(G) such that:
e D is a total dominating set: Yu € V(G), N(u)ND # 0, and
o D is a separating code: Vu # v of V(G), N(u)ND # N(v)ND

Proposition

G locatable graph on n vertices: [logy(n+1)] < OID(G). (Tight.)

Proof: For any open identifying code D, we must assign to each vertex, a distinct
non-empty subset of D: n < 21011,
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Lower bound on OID(G)

Definition - open identifying code]

Subset D of V/(G) such that:
e D is a total dominating set: Yu € V(G), N(u)ND # 0, and
o D is a separating code: Vu # v of V(G), N(u)ND # N(v)ND

Proposition

G locatable graph on n vertices: [logy(n+1)] < OID(G). (Tight.)

Proof: For any open identifying code D, we must assign to each vertex, a distinct
non-empty subset of D: n < 2Dl 1.

0ID(G) = loga(n+ 1) OID(G) = logy(n+1)
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Upper bound on OID(G)?

Definition - Half-graph Hy (Erd&s, Hajnal, 1983 H)

Bipartite graph on vertex sets {vi,..., v} and {wy,...,wy}, with an edge {v;, w;}
if and only if i <.

V1 %1 Vo Vi V2 v3 Vg V5
w1 wi w2 w1 w2 w3 Iz ws

Hi =P, Hy =Py Hs
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Upper bound on OID(G)?

7

Definition - Half-graph H, (Erdés, Hajnal, 1983 -)

Bipartite graph on vertex sets {vy,..., v} and {wy,...,wy}, with an edge {v;, w;}
if and only if i <j.

&)

&)

Hi =P

Some vertices forced in any open identifying code because of domination
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Upper bound on OID(G)?

7

Definition - Half-graph H, (Erdés, Hajnal, 1983 H)

Bipartite graph on vertex sets {vy,..., v} and {wy,...,wy}, with an edge {v;, w;}

if and only if i <j.
9 ?
O

Hi =P Hy =Py

Some vertices forced in any open identifying code because of domination
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Upper bound on OID(G)?

7

Definition - Half-graph H, (Erdés, Hajnal, 1983 H)

Bipartite graph on vertex sets {vy,..., v} and {wy,...,wy}, with an edge {v;, w;}
if and only if i <j.

Hi =P Hy =Py

Some vertices forced in any open identifying code because of domination or location
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Upper bound on OID(G)?

7

Definition - Half-graph Hj (Erdés, Hajnal, 1983 H)

Bipartite graph on vertex sets {vy,..., v} and {wy,...,wy}, with an edge {v;, w;}
if and only if i <j.

Hi =P Hy =Py Hs

Some vertices forced in any open identifying code because of domination or location
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Upper bound on OID(G)?

7

Definition - Half-graph Hj (Erdés, Hajnal, 1983 n)

Bipartite graph on vertex sets {vy,..., v} and {wy,...,wy}, with an edge {v;, w;}
if and only if i <j.

Hi =P Hy =Py Hs

Some vertices forced in any open identifying code because of domination or location

Proposition

For every half-graph Hy of order n =2k, OID(Hy) = n.

Florent Foucaud Identification problems in graphs 12 /37



Characterizing “bad graphs” for open identifying codes

7

=Y ]

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 s

Let G be a connected locatable graph of order n.
Then, OID(G) = n if and only if G is a half-graph.
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Characterizing “bad graphs” for open identifying codes

7

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 ’

=Y ]

Let G be a connected locatable graph of order n.
Then, OID(G) = n if and only if G is a half-graph.

Proof:

Such a graph has only forced vertices.
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Characterizing “bad graphs” for open identifying codes

=Y ]

7

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 ’

Let G be a connected locatable graph of order n.
Then, OID(G) = n if and only if G is a half-graph.

Proof:
Such a graph has only forced vertices.

By Bondy's theorem, there is at least one vertex x that is not location-forced: it is
domination-forced. — Its neighbour y is of degree 1.
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Characterizing “bad graphs” for open identifying codes

7

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 ’

=Y ]

Let G be a connected locatable graph of order n.
Then, OID(G) = n if and only if G is a half-graph.

Proof:
Such a graph has only forced vertices.

By Bondy's theorem, there is at least one vertex x that is not location-forced: it is
domination-forced. — Its neighbour y is of degree 1.

G' = G—{x,y} is locatable, connected and has OID(G') = n—2.
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Characterizing “bad graphs” for open identifying codes

7

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 ’

=Y ]

Let G be a connected locatable graph of order n.
Then, OID(G) = n if and only if G is a half-graph.

Proof:
Such a graph has only forced vertices.

By Bondy's theorem, there is at least one vertex x that is not location-forced: it is
domination-forced. — Its neighbour y is of degree 1.

G' = G—{x,y} is locatable, connected and has OID(G') = n—2.

By induction, G’ is a half-graph. We can conclude that G is a half-graph too, after
some case analysis.
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Location-domination in graphs
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Location-domination

Definition - Locating-dominating set (Slater, 1980’s) ﬂ

D C V(G) locating-dominating set of G:

o for every ue V, N[v]ND # 0 (domination).
@ Yu#v of V(G)\D, N(uynD # N(v)N D (location).

Notation. location-domination number LD(G),
smallest size of a locating-dominating set of G

| | {e,f}

%
{a} |
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7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

BT O
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7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

BT O

Proof: Consider an inclusionwise minimal dominating set D of G.

— its complement set V(G)\ D is also a dominating set!

Thus, either D or V(G)\ D has size at most 7. O
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7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

BT O

Theorem (Location-domination bound, Slater, 1980’s m)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

Tight examples: E %

Remark: tight examples contain many twin-vertices!!
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 I E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 I E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

Remark:
e twins are easy to detect

e twins have a trivial behaviour w.r.t. location-domination
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 I ﬂ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

If true, tight: 1. domination-extremal graphs

’
bobod
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s II)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 2 ﬂ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

If true, tight: 2. a similar construction

?

)
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 I )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

If true, tight: 3. a family with domination number 2
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 I )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

If true, tight: 4. family with dom. number 2: complements of half-graphs

Clique on {x: 1, ok}

Clique on {x1. ...k}
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Upper bound: a conjecture - special graph classes

Conjecture (Garijo, Gonzalez & Marquez, 2014 )4 ﬂ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

7

Theorem (Garijo, Gonzélez & Méarquez, 2014 ll ﬂ )

Conjecture true if G has independence number > n/2. (e.g. bipartite)

Proof: every vertex cover of a twin-free graph is a locating-dominating set
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Upper bound: a conjecture - special graph classes

Conjecture (Garijo, Gonzalez & Marquez, 2014 )4 )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

o/(G): matching number of G

Theorem (Garijo, Gonzalez & Marquez, 2014 ) 4 ﬂ )

If G has no 4-cycles, then LD(G) < o/(G) < 5.

Proof:
e Consider special maximum matching M

e Select one vertex in each edge of M
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Upper bound: a conjecture - special graph classes

Conjecture (Garijo, Gonzalez & Marquez, 2014 )4 )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

7

g
Theorem (F., Henning, 2016 &7)

Conjecture true if G is cubic.

Proof: Involved argument using maximum matching and Tutte-Berge theorem.

1
/ _ . +
(€)= XCV(6) 2

(|V(G)|+|X| —oc(G—X))

odd components
inG-X

even components
[
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Upper bound: a conjecture - special graph classes

Conjecture (Garijo, Gonzalez & Marquez, 2014 2 )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

7

Theorem (F., Henning, 2016 ﬁl%)

Conjecture true if G is cubic.

Bound is tight for cubic graphs:

Question

Do we have LD(G) = 4 for other cubic graphs?
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Upper bound: a conjecture - special graph classes

Conjecture (Garijo, Gonzalez & Marquez, 2014 2 ﬂ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

7

Theorem (F., Henning, 2016 ﬂgl)

Conjecture true if G is cubic.

o/(G): matching number of G

Question

Are there twin-free (cubic) graphs with LD(G) > &/(G)?

(if not, conjecture is true)
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Upper bound: a conjecture - special graph classes

Theorem (Garijo, Gonzalez & Marquez, 2014 ) § ﬂ )

Conjecture true if G has independence number > n/2. (e.g. bipartite)

7

Theorem (Garijo, Gonzalez & Marquez, 2014 ) 4 ﬂ )

If G has no 4-cycles, then LD(G) < o/(G) < 5.

7

Theorem (F., Henning, 2016 ﬂ*%)

Conjecture true if G is cubic.

7

Theorem (F., Henning, Léwenstein, Sasse, 2016 ﬂ‘% . %)

Conjecture true if G is split graph or complement of bipartite graph. ]

Theorem (Chakraborty, F., Parreau, Wagler, 2023 Q m ‘)

Conjecture true if G is a block graph.
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Upper bound: a conjecture - general bound

Conjecture (Garijo, Gonzalez & Maérquez, 2014 ) ¢ E )

n LD(G) < 4.

G graph of order n, no isolated vertices, no twins. The

Theorem (F., Henning, Léwenstein, Sasse, 2016 ﬂ‘% . ﬁ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < %n
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Upper bound: a conjecture - general bound

Conjecture (Garijo, Gonzalez & Maérquez, 2014 ) ¢ E)

n LD(G) < 4.

G graph of order n, no isolated vertices, no twins. The

g 3
Theorem (F., Henning, Léwenstein, Sasse, 2016 &1 . ﬁ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < %n.

Proof: e There exists a dominating set D such that each vertex has a private
neighbour, thus |D| < ny + np. Take such D that is inclusionwise maximal.

19 / 37
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Upper bound: a conjecture - general bound

7

Conjecture (Garijo, Gonzalez & Maérquez, 2014 ) ¢ E)

n

G graph of order n, no isolated vertices, no twins. Then LD(G) <

2"

Theorem (F., Henning, Léwenstein, Sasse, 2016 &1 . ﬁ)

G graph of order n, no isolated vertices, no twins. Then LD(G) <

< 2p
3N

Proof: e There exists a dominating set D such that each vertex has a private
neighbour, thus |D| < ny + np. Take such D that is inclusionwise maximal.

e there is a LD-set of size n—n; —ny
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Upper bound: a conjecture - general bound

7

Conjecture (Garijo, Gonzalez & Maérquez, 2014 ) ¢ E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

g 3
Theorem (F., Henning, Léwenstein, Sasse, 2016 &1 . ﬁ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < %

Proof: e There exists a dominating set D such that each vertex has a private
neighbour, thus |D| < ny + np. Take such D that is inclusionwise maximal.

e there is a LD-set of size n—n; —ny

e there is a LD-set of size |D|+ ny because D is maximal

1777 INDR N\
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Upper bound: a conjecture - general bound

7

Conjecture (Garijo, Gonzalez & Maérquez, 2014 ) ¢ E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

g 3
Theorem (F., Henning, Léwenstein, Sasse, 2016 &1 . ﬁ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < %

Proof: e There exists a dominating set D such that each vertex has a private
neighbour, thus |D| < ny + np. Take such D that is inclusionwise maximal.

e there is a LD-set of size n—n; —ny

e there is a LD-set of size |D|+ ny because D is maximal

1777 INDR N\

omin{|D|+n1,nfn17n2}§%n D

19 / 37
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Lower bounds
(neighbourhood complexity)
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Proposition

G graph, n vertices, LD(G) = k. Then, n <2k 4+ k—1.
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Proposition

G graph, n vertices, LD(G) = k. Then, n<2K+4+k—1. — LD(G) > [logy(n+1)—1]
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Proposition

G graph, n vertices, LD(G) = k. Then, n<2K+4+k—1. — LD(G) > [logy(n+1)—1]

Tight example (k = 4):
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Proposition

G graph, n vertices, LD(G) = k. Then, n<2K+4+k—1. — LD(G) > [logy(n+1)—1]

Theorem (Slater, 1980's ﬂ)

G tree of order n, LD(G) = k. Then n<3k—1 — LD(G) > ”TH

Tight examples: 6.2, TeeT2
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Lower bounds

Proposition

G graph, n vertices, LD(G) = k. Then, n<2K+4+k—1. — LD(G) > [logy(n+1)—1]

Theorem (Slater, 1980's ﬂ)

G tree of order n, LD(G) = k. Then n<3k—1 — LD(G) > ”TH

7

Theorem (Rall & Slater, 1080's £ i)

— 10
G planar graph, order n, LD(G) = k. Then n < 7k—10 — LD(G) > 210,

Tight examples: —
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Neighbourhood complexity

Neighbourhood complexity of a graph G:

maximum number [{N(v)N X}| of neighbourhoods inside any set X of k vertices, as a
function of k

{N(v)N X} =9
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Neighbourhood complexity

Neighbourhood complexity of a graph G:

maximum number [{N(v)N X}| of neighbourhoods inside any set X of k vertices, as a
function of k

{N(v)N X} =9

o General graphs : exponential neighbourhood complexity 2%

o Trees/planar graphs : linear neighbourhood complexity O(k)
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Interval graphs

Definition - Interval graph]

Intersection graph of intervals of the real line.

I
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 ﬁ “ E )

G interval graph of order n, LD(G) = k.
Then n < X5 ie 1D(G) = Q(v/n).
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 ﬁ “ }) )

G interval graph of order n, LD(G) = k.
Then n < X5 ie 1D(G) = Q(v/n).

o Identifying code D of size k.

@ Define zones using the right points of intervals in D.
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 ﬁ “ E )

G interval graph of order n, LD(G) =
Then n < X5 ie 1D(G) = Q(v/n).

1 2
— —
1-1 2-3
3
—
1-2 2-4
1-4 4
—
1-3 3-4

o Identifying code D of size k.
@ Define zones using the right points of intervals in D.

@ Each vertex intersects a consecutive set of intervals of D when ordered by left
points.
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 ﬁ “ E )

G interval graph of order n, LD(G) =
Then n < X5 ie 1D(G) = Q(v/n).

1 2
— —
1-1 2-3
3
—
1-2 2-4
1-4 4
—
1-3 3-4

o Identifying code D of size k.
@ Define zones using the right points of intervals in D.

@ Each vertex intersects a consecutive set of intervals of D when ordered by left
points.

— n < T (k—i) = U,
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 ﬁ “ }) )

G interval graph of order n, LD(G) = k.
Then n < X5 ie 1D(G) = Q(v/n).

Tight:
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Vapnik-Cervonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, &)
(initial motivation: machine learning, 1971)

A set S C X is shattered:
for every subset S’ C S, there is an edge e with eNS=5'.

V-C dimension of H: maximum size of a shattered set in H
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Vapnik-Cervonenkis dimension

na

Measure of intersection complexity of sets in a hypergraph (X, &)
(initial motivation: machine learning, 1971)

A set S C X is shattered:
for every subset S’ C S, there is an edge e with eNS=5'.

V-C dimension of H: maximum size of a shattered set in H

Typically bounded for geometric hypergraphs: @ o o
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

/NI (G
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

Typically bounded for geometric intersection graphs:

— interval graphs (d = 2), Cs-free graphs (d = 2), line graphs (d = 4), permutation
graphs (d = 3), unit disk graphs (d = 3), planar graphs (d =4)...
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

Typically bounded for geometric intersection graphs:

— interval graphs (d = 2), Cs-free graphs (d = 2), line graphs (d = 4), permutation
graphs (d = 3), unit disk graphs (d = 3), planar graphs (d =4)...

7

Theorem (Sauer-Shelah Lemma, 1972 B ﬁ)

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices
has at most |S|? distinct traces.
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

Typically bounded for geometric intersection graphs:

— interval graphs (d = 2), Cs-free graphs (d = 2), line graphs (d = 4), permutation
graphs (d = 3), unit disk graphs (d = 3), planar graphs (d =4)...

7

Theorem (Sauer-Shelah Lemma, 1972 B ﬁ)

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices
has at most |S|? distinct traces.

Corollary

G graph of order n, LD(G) = k, V-C dimension < d. Then n= O(k9).
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

Typically bounded for geometric intersection graphs:

— interval graphs (d = 2), Cs-free graphs (d = 2), line graphs (d = 4), permutation
graphs (d = 3), unit disk graphs (d = 3), planar graphs (d =4)...

7

Theorem (Sauer-Shelah Lemma, 1972 B i)

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices
has at most |S|? distinct traces.

Corollary

G graph of order n, LD(G) = k, V-C dimension < d. Then n= O(k9).

O(k?): interval, permutation, line...
O(k): cographs, unit interval, bipartite permutation, block...
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Sparse/structured graphs

Graph classes of bounded expansion: all shallow minors of its members have bounded
average degree — e.g. planar graphs, minor-closed classes, bounded degree...

Theorem (Reidl, Sanchez-Villaamil, Stavropoulos, 2019 . &)

Let € be a graph class of bounded expansion. Let G in ¢, order n, and LD(G) = k.
Then, n < f(%)k.
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Sparse/structured graphs

Graph classes of bounded expansion: all shallow minors of its members have bounded
average degree — e.g. planar graphs, minor-closed classes, bounded degree...

Theorem (Reidl, Sanchez-Villaamil, Stavropoulos, 2019 . &)

Let € be a graph class of bounded expansion. Let G in ¢, order n, and LD(G) = k.
Then, n < f(%)k.

Recently introduced structural measure: twin-width.

Theorem (Bonnet, F., Lehtil4, Parreau, 2024 ﬂ e E)

Let G be a graph of twin-width at most d and order n, and LD(G) = k.
Then, n < (d+42)29F1k.
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All Graphs

exponential

quasi-linear

Bounded Twin-Width

Bounded Clique-Width

linear
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Metric dimension
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Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites 4 distance to them

gps.jpg
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Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites 4 distance to them

gps.jpg

I Question '
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w, v)

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) 2 E 2

R C V(G) resolving set of G:
Yu# v in V(G), there exists w € R that distinguishes {u,v}.
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Metric dimension
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w, u) # dist(w, v)

7

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) 2 E 2

R C V(G) resolving set of G:
Yu# v in V(G), there exists w € R that distinguishes {u,v}.

(0.3) (2.1) (3.0)
2
" *2 » R={n.r}
(2,3) (2,2) MD(G) =2

Every vertex receives a unique distance-vector w.r.t. to the solution vertices.
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) | M )

R C V(G) resolving set of G:
Yu# v in V(G), there exists w € R that distinguishes {u, v}.

0.3) (2.1) (3.0
n o2 n R={n.n)
(2,3) (2,2) MD(G) =2

Every vertex receives a unique distance-vector w.r.t. to the solution vertices.

MD(G): metric dimension of G, minimum size of a resolving set of G.
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) 2 E )

R C V(G) resolving set of G:
Yu# v in V(G), there exists w € R that distinguishes {u,v}.

(0.3) (2.1) (3.0)
1,2
n o2 2 R={n,r}
(2,3) (2.2) MD(G) =2

Every vertex receives a unique distance-vector w.r.t. to the solution vertices.
MD(G): metric dimension of G, minimum size of a resolving set of G.

Remark

e Any locating-dominating set is a resolving set, hence MD(G) < LD(G).

e A locating-dominating set can be seen as a “distance-1-resolving set".
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Examples

Florent Foucaud Identification problem



e—O—CO—0O—C—C0C——0O—-0

Proposition

MD(G)=1 < G is a path
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e—O—CO—0O—C—C0C——0O—-0

Proposition

MD(G)=1 < G is a path

Proposition

For any square grid G, MD(G) = 2.

Identification problems in graphs



Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree >3 and 1.

Florent Foucaud Identification problems in graphs 33 /37



Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree >3 and 1.
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree >3 and 1.

Observation

R resolving set. If v has k legs, at least k —1 legs contain a vertex of R.

Simple leg rule: if v has k > 2 legs, select kK —1 leg endpoints.
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree >3 and 1.

Observation

R resolving set. If v has k legs, at least k —1 legs contain a vertex of R.

Simple leg rule: if v has k > 2 legs, select kK —1 leg endpoints.

Theorem (Slater, 1975 ﬂ)

For any tree, the simple leg rule produces an optimal resolving set.
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree >3 and 1.

Observation

R resolving set. If v has k legs, at least k —1 legs contain a vertex of R.

Simple leg rule: if v has k > 2 legs, select kK —1 leg endpoints.

Theorem (Slater, 1975 ﬂ)

For any tree, the simple leg rule produces an optimal resolving set.
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002 E ' .ﬁ)

G of order n, diameter D, MD(G) = k. Then n < D¥ + k.

(diameter D: maximum distance between two vertices)

Proof: Every vertex not in the solution R is assigned to a unique vector of length k,
with values in {1,...,D}: D* possibilities, plus the k ones in R. O
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002 E ' .ﬁ)

G of order n, diameter D, MD(G) = k. Then n < D¥ + k.

(diameter D: maximum distance between two vertices)

Proof: Every vertex not in the solution R is assigned to a unique vector of length k,
with values in {1,...,D}: D* possibilities, plus the k ones in R. O

7

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 3 “ E )

G interval graph of order n, MD(G) = k, diameter D. Then n= O(Dk?) i.e.
k=Q(y/5). (Tight.)
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002 E ' .ﬁ)

G of order n, diameter D, MD(G) = k. Then n < D¥ + k.

(diameter D: maximum distance between two vertices)

Proof: Every vertex not in the solution R is assigned to a unique vector of length k,
with values in {1,...,D}: D* possibilities, plus the k ones in R. O

7

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 W “ ﬁ )

G interval graph of order n, MD(G) = k, diameter D. Then n= O(Dk?) i.e.
k=Q(y/5). (Tight.)

— Proof is similar as that for locating-dominating sets.
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Trees

7

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 ‘B‘ L4 mgl . E)

T a tree with diameter D and MD(T) = k, then

1 .
n< { g(kD+4)(D+2) if Deven, _ O(kD?)

$(kD—k+8)(D+1) if D odd.

Bounds are tight.

k=2 D=6 k=2,D=7

NN
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Planar graphs

Using the concept of distance-VC-dimension:

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 ’B‘ 4 ll‘gl . }))

G planar with diameter D and MD(G) = k, then n= O(k*D*).
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Planar graphs

Using the concept of distance-VC-dimension:

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 ’B‘ 4 fl‘g! . E)

G planar with diameter D and MD(G) = k, then n= O(k*D*).

Using the concept of profiles and r-neighbourhood complexity:

7

Theorem (Joret, Rambaud, 2023+ il X)

G planar with diameter D and MD(G) = k, then n = O(kD*).
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Planar graphs

Using the concept of distance-VC-dimension:

7

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 Q‘ L4 ﬂ‘gl l E)

G planar with diameter D and MD(G) = k, then n= O(k*D*).

Using the concept of profiles and r-neighbourhood complexity:

Theorem (Joret, Rambaud, 2023+ 2)

G planar with diameter D and MD(G) = k, then n= O(kD*).

Tight? Planar example with k =3 and n= ©(D3):
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Planar graphs

Using the concept of distance-VC-dimension:

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 ’B‘ 4 mgl . E)

G planar with diameter D and MD(G) = k, then n= O(k*D*).

Using the concept of profiles and r-neighbourhood complexity:

7

Theorem (Joret, Rambaud, 2023+ il X)

G planar with diameter D and MD(G) = k, then n = O(kD*).

Tight? Planar example with treewidth 2 and n = ©(kD3):

N N N N
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Selected open questions

o Graphs G of order n with OID(G) =n—17?

Conjecture: LD(G) < n/2 in the absence of twins

o Find tight bounds for Metric Dimension of planar graphs of diameter D
(and other classes)

Neighbourhood complexity at distance r
— graphs of bounded twin-width, planar graphs...

@ Algorithms : efficient algorithms for unit interval graphs?
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o Graphs G of order n with OID(G) =n—17?

Conjecture: LD(G) < n/2 in the absence of twins

o Find tight bounds for Metric Dimension of planar graphs of diameter D
(and other classes)

Neighbourhood complexity at distance r
— graphs of bounded twin-width, planar graphs...

@ Algorithms : efficient algorithms for unit interval graphs?

THANKS FOR YOUR ATTENTION!
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