Algorithmic aspects of finding large acyclic subgraphs of directed graphs

Alantha Newman

G-SCOP, Grenoble

Directed Graphs

A directed graph (digraph) is a graph where each edge has a direction (i.e., an arc).

We look for either

- a set of arcs that contains no directed cycles (i.e., acyclic subgraph),
- or a set of vertices whose induced subgraph contains no directed cycles (i.e., acyclic set).

Part I: Acyclic Subgraphs of Directed Graphs

The Maximum Acyclic Subgraph Problem

Given a directed graph $G=(V, E)$, the maximum acyclic subgraph problem is to find a maximum cardinality subset of the edges that is acyclic.

This problem is also known as the linear ordering problem.

Complement of the minimum feedback arc set problem: find a minimum weight subset $F \subseteq E$ such that $G^{\prime}=(V, E \backslash F)$ is acyclic.
(A max acyclic subgraph in an undirected graph is a spanning tree.)

Simple $\frac{1}{2}$-Approximation

Take any ordering of the vertices. Either the set of forward edges or the set of backward edges contains at least half of the edges.

Exist instances where $O P T \approx|E| / 2$, so we can't do better in general.
Open Problem: Can we find acyclic subgraph of size $\geq \frac{(1+\epsilon)}{2} O P T$?
NP-hard to approximate to within better than $\frac{14}{15}$ [Austrin, Manokaran, Wenner 2015].

Unique-Games hard to do better than half [Guruswami, Håstad, Manokaran, Raghavendra, Charikar 2008].

Goal is to distinguish between instances where

- $O P T \approx|E|$, and
- $O P T \approx|E| / 2$.

In first case, we want solution $\gg|E| / 2$.
In latter case, we want an upper bound $\ll|E|$.

Approximating MAS

$G=(V, E)$ is a digraph.
Let A be symmetric adjacency matrix for underlying (undirected) graph of G.

Let λ be the minimum (non-zero) eigenvalue of the normalized Laplacian for $G, L:=I-\frac{1}{d} A$.

Theorem: There is an algorithm for maximum acyclic subgraph with approximation ratio $\frac{2}{4-\lambda}$.
$\lambda=\min _{x \in \mathrm{R}^{n}-\{0\}} \frac{x^{t} L x}{x^{t} x}$.
Characterization of λ used by [Arora, Khot, Kolla, Steurer, Tulsiani, Vishnoi 2008] for Unique Games algorithm:

$$
\lambda=\min \frac{\mathbb{E} \sum_{u v \in E}\left|z_{u}-z_{v}\right|^{2}}{\mathbb{E} \sum_{u, v \in V}\left|z_{u}-z_{v}\right|^{2}} .
$$

Cut Problems

The goal of a cut problem is to partition the vertices into two (or more) sets so as to optimize a given objective function.

Maximum Cut

3-Coloring

Semidefinite Programming for Max Cut

Max Cut SDP [Goemans, Williamson 94]

$$
\begin{aligned}
& \max \\
& \sum_{i j \in A} \frac{1}{2}\left(1-v_{i} \cdot v_{j}\right) \\
& v_{i} \quad \in \quad\{-1,1\} \quad \forall i \in V
\end{aligned}
$$

Semidefinite Programming for Max Cut

Max Cut SDP [Goemans, Williamson 94]

$$
\begin{align*}
& \max \\
& \sum_{i j \in A} \frac{1}{2}\left(1-v_{i} \cdot v_{j}\right) \\
v_{i} & \in \mathrm{R}^{n} \quad \forall i \in V . \tag{1}\\
v_{i} \cdot v_{i} & =1
\end{align*}
$$

$-1 \quad 1$

Maximum Directed Cut SDP[GW94]

An Ordering is a Series of Cuts

A vertex ordering can be precisely described by $n-1$ bipartitions of the vertices.

Ordering SDP

Our SDP is equivalent to a formulation using only unit vectors.
There are $n+1$ vectors for every vertex.
The following is an integral solution for a graph on four vertices in which vertex i is in position i in the ordering.

$$
\begin{aligned}
& \left\{v_{1}^{0}, v_{1}^{1}, v_{1}^{2}, v_{1}^{3}, v_{1}^{4}\right\}=\{-1,1,1,1,1\} \\
& \left\{v_{2}^{0}, v_{2}^{1}, v_{2}^{2}, v_{2}^{3}, v_{2}^{4}\right\}=\{-1,-1,1,1,1\} \\
& \left\{v_{3}^{0}, v_{3}^{1}, v_{3}^{2}, v_{3}^{3}, v_{3}^{4}\right\}=\{-1,-1,-1,1,1\} \\
& \left\{v_{4}^{0}, v_{4}^{1}, v_{4}^{2}, v_{4}^{3}, v_{4}^{4}\right\}=\{-1,-1,-1,-1,1\} .
\end{aligned}
$$

An SDP for Linear Ordering

$$
\begin{aligned}
\max \sum_{i, j \in V} \sum_{1 \leq h<\ell \leq n} \frac{1}{4} w_{i j}\left(v_{i}^{h}-v_{i}^{h-1}\right) \cdot\left(v_{j}^{\ell}-v_{j}^{\ell-1}\right) & \\
\left(v_{i}^{h}-v_{i}^{h-1}\right) \cdot\left(v_{j}^{\ell}-v_{j}^{\ell-1}\right) & \geq 0 \quad \forall i, j \in V, h, \ell \in[n] \\
v_{i}^{\frac{n}{2}} \cdot\left(\sum_{j=1}^{n} v_{j}^{\frac{n}{2}}\right) & =0 \quad \forall i \in V \\
v_{i}^{h} \cdot v_{i}^{h} & =1 \quad \forall i, h \in[n] \\
v_{i}^{0} \cdot v_{0} & =-1 \quad \forall i \in V \\
v_{i}^{n} \cdot v_{0} & =1 \quad \forall i \in V \\
v_{i}^{h} & \in\{1,-1\} \quad \forall i, h \in[n] .
\end{aligned}
$$

Objective Function:

$$
\max \sum_{i, j \in E} \sum_{1 \leq h<\ell \leq n} \frac{1}{4}\left(v_{i}^{h}-v_{i}^{h-1}\right) \cdot\left(v_{j}^{\ell}-v_{j}^{\ell-1}\right)
$$

An edge (i, j) only contributes 1 to the objective function when:

$$
v_{i}^{h-1}=v_{j}^{\ell-1}=-1 \text { and } v_{i}^{h}=v_{j}^{\ell}=1
$$

Valid: . . . $h-1 \quad h$. . . $\ell-1 \quad \ell$

. . .	-1	1	.	.	1	1		
. .	.	-1	-1	.	.	.	-1	1

$$
\left(v_{i}^{h}-v_{i}^{h-1}\right) \cdot\left(v_{j}^{\ell}-v_{j}^{\ell-1}\right) \geq 0
$$

Invalid: . . . $h-1 \quad h$. . . $\ell-1 \quad \ell$

$$
\begin{array}{ccccccc}
-1 & -1 & . & . & . & 1 & -1 \\
-1 & 1 & . & . & . & 1 & 1
\end{array}
$$

Difference Cuts

Problem of finding a cut that maximizes the difference between forward and backward edges is polytime solvable.

$$
\max \sum_{i j \in A}\left(x_{i}-x_{j}\right), \quad 0 \leq x_{i} \leq 1 .
$$

Optimal solutions to this LP are integral.
If there is a cut with difference more than $\delta|E|$, then we can have a max acyclic subgraph with size more than $\delta|E|+\frac{1}{2}(1-\delta)|E|=\left(\frac{1+\delta}{2}\right)|E|$.

Worst case is when digraph is Eulerian.

An Upper Bound on OPT

Assume digraph is Eulerian. All cuts have difference 0 .
Consider the "cut value" associated with "middle vectors" $x_{u}=v_{u}^{n / 2}$.
"Fractional" value that crosses the cut: $C:=\sum_{(u, v) \in E} \frac{1-x_{u} \cdot x_{n}}{2}$
Forward $_{C}+$ Backwards $_{C}=C$ and Forward $_{C}=$ Backwards $_{C}$.
$|E|-M A S_{S D P}=F A S_{S D P} \geq$ Backwards $_{C} \geq \frac{C}{2}$
$M A S_{S D P} \leq|E|-\frac{C}{2} \leq|E|-\frac{\lambda|E|}{4}$
Magic step: $\lambda=\min \frac{\mathbb{E} \sum_{w w \in \mathbb{E}}\left|z_{u}-z_{0}\right|^{2}}{\mathbb{E} \sum_{u, v e V}\left|z_{u}-z_{v}\right|^{2}} \Rightarrow C \geq \frac{\lambda|E|}{2}$.

Directed Cuts

For each of the $n-1$ cuts defined by vectors $\left\{v_{i}^{k}\right\}$ for $n-1$ possible values of k, the forward value is:

$$
\frac{1}{4} \sum_{i j \in A} \sum_{h \leq k, \ell>k}\left(v_{i}^{h}-v_{i}^{h-1}\right) \cdot\left(v_{j}^{\ell}-v_{j}^{\ell-1}\right)
$$

The backward value is:

$$
\frac{1}{4} \sum_{i j \in A} \sum_{h>k, \ell \leq k}\left(v_{i}^{h}-v_{i}^{h-1}\right) \cdot\left(v_{j}^{\ell}-v_{j}^{\ell-1}\right)
$$

An Upper Bound on OPT

If there is a cut with difference $\delta|E|$, we get $\frac{(1+\delta)|E|}{2}$
Consider the "cut value" associated with "middle vectors" $x_{u}=v_{i}^{n / 2}$.
"Fractional" value that crosses the cut: $C:=\sum_{(u, v) \in E} \frac{1-x_{u} \cdot x_{n}}{2}$
$|E|-M A S_{S D P}=F A S_{S D P} \geq \frac{C-\delta|E|}{2}$
$M A S_{S D P} \leq|E|-\frac{C}{2}+\frac{\delta|E|}{2} \leq|E|-\frac{\lambda|E|}{4}+\frac{\delta|E|}{2}$
$\lambda=\min \frac{\mathbb{E} \sum_{w w E E}\left|z_{u}-z_{v}\right|}{\mathbb{E} \sum_{u, v \in V}\left|z_{u}-z_{v}\right|} \Rightarrow C \geq \frac{\lambda|E|}{2}$.

Part II: Induced Acyclic Subgraphs of Directed Graphs

Joint work with Felix Klingelhoefer (who made many pictures/slides).

Directed Graphs and (Induced) Acyclic Sets

An acyclic set is a set of vertices whose induced subgraph contains no cycles.

The problem of finding a large stable set in an undirected graph can be reduced to finding a large (induced) acyclic set by replacing each edge with a directed 2-cycle.

Directed Graphs and Dicoloring

A dicoloring of a directed graph is a partition of its vertices into acyclic sets.

The problem of coloring an undirected graph can be reduced to dicoloring by replacing each edge with a directed 2 -cycle.

For oriented graphs without 2-cycles, 2-dicoloring is NP-hard.
If we can dicolor a digraph with c colors, then there exists an acyclic set of size at least n / c.

Acyclic Sets in Oriented Digraphs

We can always find an acyclic set containing $O(\log n)$ vertices.
It is hard to find induced acyclic set of size at least $n^{1 / 2+\epsilon}$ in an oriented digraph containing such a set of size $n^{1-\epsilon}$.

What about promise of being 2-colorable? (i.e., There exists an acyclic set of size at least $n / 2$.)

- NP-hard.
- UG-hard to dicolor with any constant number of colors [Svensson 2013].
- How to get any o(n) colors?

Acyclic Sets in Tournaments

Tournament is an orientation of a complete graph.

Also very hard in general.

Recall that if we can color with c colors, then find acyclic set of size n / c
Currently, we don't know how to find acyclic sets in tournaments without going through coloring ...

Tournaments and Coloring

Coloring tournaments is a special case of coloring 3-uniform hypergraphs, where every directed triangle is represented by a hyperedge.

Erdős Hajnal Conjecture

The following is a famous conjecture by [Erdős and Hajnal 1989].
Conjecture: For every graph H, there exists a positive constant $\epsilon(H)$ such that every H-free graph on n vertices contains a clique or an independent set of size $\Omega\left(n^{\epsilon(H)}\right)$.
[Alon, Pach, Solymosi 2001] proved that it has an equivalent formulation in terms of tournaments.

Conjecture: For every tournament T, there exists a positive constant $\epsilon(H)$ such that every H-free tournament on n vertices contains a transitive set of size $\Omega\left(n^{\epsilon(H)}\right)$.

Heroes in tournaments

The class of tournaments H such that any H-free tournament has constant chromatic number (called heroes) has been completely defined [Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour, Thomassé 2013].

Heroes are exactly the tournaments with EH exponent $\epsilon(H)=1$.

Proved by showing H-free tournaments have "constant" chromatic number, where constant depends on H. Not (completely) constructive.

State of the art for tournament coloring

Similar to 3-colorable graphs, we can ask what is the minimum number of colors required to color a 2-colorable tournament?

Tournament Type	Lower Bound	Upper Bound
2-Colorable tournaments	$2[\mathrm{CHZ} \mathrm{2007]}$	$\widetilde{O}\left(n^{\frac{1}{5}}\right)[$ KNS 2001]
3-Colorable tournaments	$3[$ FGSY 2019]	$?$
k-Colorable tournaments, $k \geq 2$	$k[$ FGSY 2019]	$?$
General tournaments	$?$	$n / \log n$

Best known polynomial time inapproximability results and approximation algorithms for various tournament coloring problems.

We can color a 2-colorable tournament with $O\left(n^{1 / 5}\right)$ colors. (Works via iteratively finding induced acyclic sets.)

Efficient coloring of 2-colorable tournaments

We use $\vec{\chi}_{\text {eff }}(T)$ to denote the number of colors with which a tournament T can be colored efficiently.

- Problem: How many colors do we need to efficiently color a 2-colorable tournament ?
- At least 3 since 2-coloring 2-colorable tournaments is NP-hard.
- At most $O\left(n^{\frac{1}{5}}\right)$.
- Theorem: Every 2-colorable tournament can be efficiently colored with 10 colors.

Path Decomposition

- Every vertex is in some set D_{i}.
- The red arcs form a shortest path from $s=v_{0}$ to $t=v_{k}$.
- There can be no long (≥ 5) forward arc between the D_{i} 's.
- Every D_{i} is in the neighborhood of a red arc, except D_{0} and D_{k+1}.
$-\vec{\chi}_{\text {eff }}(T) \leq 5 \cdot \max _{i} \vec{\chi}_{\text {eff }}\left(D_{i}\right)$.

Decomposition Lemma

- A c-good pair is a pair of vertices (s, t) such that $\vec{\chi}_{\text {eff }}\left(N^{+}(s) \cup N^{-}(t)\right) \leq c$.
- Lemma: If T has a c-good pair and if $\vec{\chi}_{\text {eff }}(N(e)) \leq c$ for each arc e, then $\vec{\chi}_{\text {eff }}(T) \leq 5 c$.
- The c-good pair bounds D_{0} and D_{k+1} and the condition $\vec{\chi}_{\text {eff }}(N(e)) \leq c$ bounds all the remaining D_{i}.

2-Colorable tournaments: Finding a good pair

- Lemma: Every 2-colorable tournament has a 1-good pair.

- Every 2-colorable tournament has a partition into two transitive sets.
- t_{1} can only have blue in-neighbors.
- s_{1} can only have blue out-neighbors.
- $N^{-}\left(t_{1}\right) \cup N^{+}\left(s_{1}\right)$ is a subset of the blue vertices, thus acyclic.
- $\left(s_{1}, t_{1}\right)$ and (s_{2}, t_{2}) both form 1-good pairs.

2-colorable tournaments: Bounding the edge neighborhood
Lemma: Every 2-colorable tournament can be efficiently partitioned into two 2-colorable light tournaments.

We say an edge is heavy if its neighborhood contains a triangle. The set of heavy edges must form a bipartite graph.

We can then 2-color that graph such that no color class contains a heavy edge.

2-colorable tournaments: Bounding the edge neighborhood
Lemma: Every 2-colorable tournament can be efficiently partitioned into two 2-colorable light tournaments.

We say an edge is heavy if its neighborhood contains a triangle. The set of heavy edges must form a bipartite graph.

We can then 2-color that graph such that no color class contains a heavy edge.

2-colorable tournaments: Bounding the edge neighborhood
Lemma: Every 2-colorable tournament can be efficiently partitioned into two 2-colorable light tournaments.

We say an edge is heavy if its neighborhood contains a triangle. The set of heavy edges must form a bipartite graph.

We can then 2-color that graph such that no color class contains a heavy edge.

2-colorable tournaments: Bounding the edge neighborhood
Lemma: Every 2-colorable tournament can be efficiently partitioned into two 2-colorable light tournaments.

We say an edge is heavy if its neighborhood contains a triangle. The set of heavy edges must form a bipartite graph.

We can then 2-color that graph such that no color class contains a heavy edge.

Coloring 2-colorable tournaments

We partition the 2-colorable tournament into two 2-colorable light tournaments, which can each be colored with 5 colors using the decomposition lemma, resulting in the following theorem:

Theorem: Every 2-colorable tournament can be efficiently colored with 10 colors.

Coloring 3-Colorable Tournaments

Theorem: If we can efficiently color a 3-colorable graph G with k colors, then we can efficiently color a 3 -colorable tournament with $50 k$ colors.

Which implies the following bound using the current best bound for coloring 3-colorable graphs [Kawarabayashi, Thorup 2017].

Corollary: Let T be a 3-colorable tournament on n vertices. Then, $\vec{\chi}_{\text {eff }}(T) \leq O\left(n^{19996}\right)$.

Other direction holds, too.
Problems of coloring 3-colorable graphs and 3-colorable tournaments with constantly many colors are essentially equivalent.

Coloring light tournaments

Recall light tournaments are tournaments with no heavy edge.
Problem: How many colors do we need to (efficiently) color light tournaments?

A heavy edge.
(A 2-colorable light tournament can be colored with 5 colors, but now we are interested in general light tournaments.)

Coloring light tournaments

It was known that light tournaments can be colored with constantly many colors, but proof was not constructive [Berger et al. 2013].

Proof can be made algorithmic with around 35 colors.

- Light tournaments have bounded chromatic number because herofree (i.e., $\Delta\left(1,1, C_{3}\right)$-free).
- [Berger et al.] use "jewel chain" to color.

To use the decomposition lemma, we need to find a good pair and bound the edge neighborhood.

- All edge neighborhoods are acyclic in light tournaments.
- We use jewel chain to find a good pair.

Any light tournament can be colored with at most 8 colors.
There is a light tournament that requires 3 colors. What is the truth?

Complexity of Coloring Tournaments

- Best known result is that it is NP-hard to color k-colorable tournaments with k colors, for $k \geq 2$. [Fox, Gishboliner, Shapira, Yuster 2019].
- We show it is NP-hard to color k-colorable tournaments with $2 k-1$ colors.
- We show it is NP-hard to color 2-colorable tournaments with 3 colors.
- If it is NP-hard to color a 2-colorable tournament with 4 colors, then there is no poly-time algorithm to 2-color a 2-colorable light tournament.

Arc-bounded Tournaments

Light tournaments have $\chi(N(e)) \leq 1$ and have $\chi(T) \leq O(1)$.
[Haratyunyan, Le, Thomassé, Wu 19] showed if $\chi\left(N^{+}(u)\right) \leq t$, then $\chi(T) \leq f(t)$.

Theorem: if $\chi(N(e)) \leq t$, then $\chi(T) \leq g(t)$.
Question: If T or G has high chromatic number, what subgraph are forbidden?

Conjecture: If T has high chromatic number, then it has two sets A and B, each with high chromatic number, and all arcs from A to B [Scott, Seymour, Tung 2023].

Conjecture: If G has high chromatic number and clique size at most t, then it has two anti-complete sets, each with high chromatic number [Erdős, El-Zahar 1985].
[Scott, Seymour, Tung 2023] showed first implies second.
Theorem: Second conjecture implies first; Conjectures are equivalent.

Open problems

Find a transitive subset of size greater than $n / 10$ in 2-colorable tournaments.

2-color 2-colorable light tournaments?
Get better algorithmic or complexity results for digraphs.

