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Directed Graphs

A directed graph (digraph) is a graph where each edge has a direction
(i.e., an arc).

We look for either

– a set of arcs that contains no directed cycles (i.e., acyclic subgraph),

– or a set of vertices whose induced subgraph contains no directed
cycles (i.e., acyclic set).
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Part I: Acyclic Subgraphs of Directed Graphs
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The Maximum Acyclic Subgraph Problem

Given a directed graph G = (V,E), the maximum acyclic subgraph prob-
lem is to find a maximum cardinality subset of the edges that is acyclic.

This problem is also known as the linear ordering problem.

Complement of the minimum feedback arc set problem: find a minimum
weight subset F ⊆ E such that G′ = (V,E \ F ) is acyclic.

(A max acyclic subgraph in an undirected graph is a spanning tree.)
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Simple 1
2-Approximation

Take any ordering of the vertices. Either the set of forward edges or the
set of backward edges contains at least half of the edges.

Exist instances where OPT ≈ |E|/2, so we can’t do better in general.

Open Problem: Can we find acyclic subgraph of size ≥ (1+ε)
2
OPT?

NP-hard to approximate to within better than 14
15

[Austrin, Manokaran,
Wenner 2015].

Unique-Games hard to do better than half [Guruswami, Håstad, Manokaran,
Raghavendra, Charikar 2008].

Goal is to distinguish between instances where

– OPT ≈ |E|, and

– OPT ≈ |E|/2.

In first case, we want solution � |E|/2.

In latter case, we want an upper bound � |E|.
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Approximating MAS

G = (V,E) is a digraph.

Let A be symmetric adjacency matrix for underlying (undirected) graph
of G.

Let λ be the minimum (non-zero) eigenvalue of the normalized Laplacian
for G, L := I − 1

d
A.

Theorem: There is an algorithm for maximum acyclic subgraph with
approximation ratio 2

4−λ.

λ = minx∈Rn−{0}
xtLx
xtx

.

Characterization of λ used by [Arora, Khot, Kolla, Steurer, Tulsiani,
Vishnoi 2008] for Unique Games algorithm:

λ = min
E
∑

uv∈E |zu − zv|2

E
∑

u,v∈V |zu − zv|2
.
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Cut Problems

The goal of a cut problem is to partition the vertices into two (or more)
sets so as to optimize a given objective function.

Maximum Cut 3-Coloring
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Semidefinite Programming for Max Cut

Max Cut SDP [Goemans, Williamson 94]

max
∑
ij∈A

1

2
(1− vi · vj)

vi ∈ {−1,1} ∀i ∈ V.

-1 1
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Semidefinite Programming for Max Cut

Max Cut SDP [Goemans, Williamson 94]

max
∑
ij∈A

1

2
(1− vi · vj)

vi ∈ Rn ∀i ∈ V.
vi · vi = 1. (1)

-1 1
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Maximum Directed Cut SDP[GW94]

max
∑
ij∈A

1

4
(1− vi · vj + vi · v0 − vj · v0)

vi ∈ {−1,1} ∀i ∈ V.
v0 = 1.

-1 1
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An Ordering is a Series of Cuts

...

A vertex ordering can be precisely described by n− 1 bipartitions of the
vertices.
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Ordering SDP

Our SDP is equivalent to a formulation using only unit vectors.

There are n+ 1 vectors for every vertex.

The following is an integral solution for a graph on four vertices in which
vertex i is in position i in the ordering.

{v0
1, v

1
1, v

2
1, v

3
1, v

4
1} = {−1, 1, 1, 1, 1},

{v0
2, v

1
2, v

2
2, v

3
2, v

4
2} = {−1,−1, 1, 1, 1},

{v0
3, v

1
3, v

2
3, v

3
3, v

4
3} = {−1,−1,−1, 1, 1},

{v0
4, v

1
4, v

2
4, v

3
4, v

4
4} = {−1,−1,−1,−1, 1}.
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An SDP for Linear Ordering

max
∑
i,j∈V

∑
1≤h<`≤n

1

4
wij(v

h
i − vh−1

i ) · (v`j − v`−1
j )

(vhi − vh−1
i ) · (v`j − v`−1

j ) ≥ 0 ∀i, j ∈ V, h, ` ∈ [n]

v
n

2

i · (
n∑

j=1

v
n

2

j ) = 0 ∀i ∈ V

vhi · vhi = 1 ∀i, h ∈ [n]
v0
i · v0 = −1 ∀i ∈ V
vni · v0 = 1 ∀i ∈ V

vhi ∈ {1,−1} ∀i, h ∈ [n].
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Objective Function:

max
∑
i,j∈E

∑
1≤h<`≤n

1

4
(vhi − vh−1

i ) · (v`j − v`−1
j )

An edge (i, j) only contributes 1 to the objective function when:

vh−1
i = v`−1

j = −1 and vhi = v`j = 1.

Valid: . . . h-1 h . . . `-1 ` . . .
. . . -1 1 . . . 1 1 . . .
. . . -1 -1 . . . -1 1 . . .

(vhi − vh−1
i ) · (v`j − v`−1

j ) ≥ 0

Invalid: . . . h-1 h . . . `-1 ` . . .
. . . -1 -1 . . . 1 -1 . . .
. . . -1 1 . . . 1 1 . . .
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Difference Cuts

Problem of finding a cut that maximizes the difference between forward
and backward edges is polytime solvable.

max
∑
ij∈A

(xi − xj), 0 ≤ xi ≤ 1.

Optimal solutions to this LP are integral.

If there is a cut with difference more than δ|E|, then we can have a max
acyclic subgraph with size more than δ|E|+ 1

2
(1− δ)|E| = (1+δ

2
)|E|.

Worst case is when digraph is Eulerian.

15



An Upper Bound on OPT

Assume digraph is Eulerian. All cuts have difference 0.

Consider the “cut value” associated with “middle vectors” xu = v
n/2
u .

“Fractional” value that crosses the cut: C :=
∑

(u,v)∈E
1−xu·xv

2

ForwardC + BackwardsC = C and ForwardC = BackwardsC.

|E| −MASSDP = FASSDP ≥ BackwardsC ≥ C
2

MASSDP ≤ |E| − C
2
≤ |E| − λ|E|

4

Magic step: λ = min
E

∑
uv∈E
|zu−zv|2

E

∑
u,v∈V
|zu−zv|2

⇒ C ≥ λ|E|
2

.
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Directed Cuts

For each of the n−1 cuts defined by vectors {vki } for n−1 possible values
of k, the forward value is:

1

4

∑
ij∈A

∑
h≤k, `>k

(vhi − vh−1
i ) · (v`j − v`−1

j )

...

The backward value is:

1

4

∑
ij∈A

∑
h>k, `≤k

(vhi − vh−1
i ) · (v`j − v`−1

j )
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An Upper Bound on OPT

If there is a cut with difference δ|E|, we get (1+δ)|E|
2

Consider the “cut value” associated with “middle vectors” xu = v
n/2
i .

“Fractional” value that crosses the cut: C :=
∑

(u,v)∈E
1−xu·xv

2

|E| −MASSDP = FASSDP ≥ C−δ|E|
2

MASSDP ≤ |E| − C
2

+ δ|E|
2
≤ |E| − λ|E|

4
+ δ|E|

2

λ = min
E

∑
uv∈E
|zu−zv|

E

∑
u,v∈V
|zu−zv|

⇒ C ≥ λ|E|
2

.

18



Part II: Induced Acyclic Subgraphs of Directed Graphs

Joint work with Felix Klingelhoefer

(who made many pictures/slides).
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Directed Graphs and (Induced) Acyclic Sets

An acyclic set is a set of vertices whose induced subgraph contains no
cycles.

The problem of finding a large stable set in an undirected graph can be
reduced to finding a large (induced) acyclic set by replacing each edge
with a directed 2-cycle.
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Directed Graphs and Dicoloring

A dicoloring of a directed graph is a partition of its vertices into acyclic
sets.

The problem of coloring an undirected graph can be reduced to dicoloring
by replacing each edge with a directed 2-cycle.

For oriented graphs without 2-cycles, 2-dicoloring is NP-hard.

If we can dicolor a digraph with c colors, then there exists an acyclic set
of size at least n/c.
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Acyclic Sets in Oriented Digraphs

We can always find an acyclic set containing O(logn) vertices.

It is hard to find induced acyclic set of size at least n1/2+ε in an oriented
digraph containing such a set of size n1−ε.

What about promise of being 2-colorable? (i.e., There exists an acyclic
set of size at least n/2.)

– NP-hard.

– UG-hard to dicolor with any constant number of colors [Svensson
2013].

– How to get any o(n) colors?
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Acyclic Sets in Tournaments

Tournament is an orientation of a complete graph.

Also very hard in general.

Recall that if we can color with c colors, then find acyclic set of size n/c

Currently, we don’t know how to find acyclic sets in tournaments without
going through coloring ...
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Tournaments and Coloring

Coloring tournaments is a special case of coloring 3-uniform hypergraphs,
where every directed triangle is represented by a hyperedge.

v1

v2

v3

v4
v5

v1

v2

v3

v4
v5
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Erdős Hajnal Conjecture

The following is a famous conjecture by [Erdős and Hajnal 1989].

Conjecture: For every graph H, there exists a positive constant ε(H)
such that every H-free graph on n vertices contains a clique or an inde-
pendent set of size Ω(nε(H)).

[Alon, Pach, Solymosi 2001] proved that it has an equivalent formulation
in terms of tournaments.

Conjecture: For every tournament T , there exists a positive constant
ε(H) such that every H-free tournament on n vertices contains a transi-
tive set of size Ω(nε(H)).
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Heroes in tournaments

The class of tournaments H such that any H-free tournament has con-
stant chromatic number (called heroes) has been completely defined [Berger,
Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour, Thomassé 2013].

Heroes are exactly the tournaments with EH exponent ε(H) = 1.

H

Tk

k ≥ 1 u v

t1

t2

t3

Proved by showing H-free tournaments have “constant” chromatic num-
ber, where constant depends on H. Not (completely) constructive.
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State of the art for tournament coloring

Similar to 3-colorable graphs, we can ask what is the minimum number of
colors required to color a 2-colorable tournament?

Tournament Type Lower Bound Upper Bound

2-Colorable tournaments 2 [CHZ 2007] Õ(n
1

5 ) [KNS 2001]
3-Colorable tournaments 3 [FGSY 2019] ?
k-Colorable tournaments, k ≥ 2 k [FGSY 2019] ?
General tournaments ? n/ logn

Best known polynomial time inapproximability results and approximation
algorithms for various tournament coloring problems.

We can color a 2-colorable tournament with O(n1/5) colors. (Works via
iteratively finding induced acyclic sets.)
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Efficient coloring of 2-colorable tournaments

We use ~χeff(T ) to denote the number of colors with which a tournament
T can be colored efficiently.

• Problem: How many colors do we need to efficiently color a 2-colorable
tournament ?

– At least 3 since 2-coloring 2-colorable tournaments is NP-hard.

– At most O(n
1

5 ).

• Theorem: Every 2-colorable tournament can be efficiently colored with
10 colors.
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Path Decomposition

s = v0 v1 v2 v3 v4 t = v5

D0 D1 D2 D3 D4 D5 D6

e0 e1 e2 e3 e4

- Every vertex is in some set Di.
- The red arcs form a shortest path from s = v0 to t = vk.
- There can be no long (≥ 5) forward arc between the Di’s.
- Every Di is in the neighborhood of a red arc, except D0 and Dk+1.
- ~χeff(T ) ≤ 5 ·maxi ~χeff(Di).
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Decomposition Lemma

• A c-good pair is a pair of vertices (s, t) such that ~χeff(N+(s)∪N−(t)) ≤ c.

• Lemma: If T has a c-good pair and if ~χeff(N(e)) ≤ c for each arc e, then
~χeff(T ) ≤ 5c.

• The c-good pair bounds D0 and Dk+1 and the condition ~χeff(N(e)) ≤ c
bounds all the remaining Di.
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2-Colorable tournaments: Finding a good pair

• Lemma: Every 2-colorable tournament has a 1-good pair.

t1

s1

t2

s2

- Every 2-colorable tournament has a partition into two transitive sets.
- t1 can only have blue in-neighbors.
- s1 can only have blue out-neighbors.
- N−(t1) ∪N+(s1) is a subset of the blue vertices, thus acyclic.
- (s1, t1) and (s2, t2) both form 1-good pairs.
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2-colorable tournaments: Bounding the edge neighborhood

Lemma: Every 2-colorable tournament can be efficiently partitioned into
two 2-colorable light tournaments.

u v

t1

t2

t3

We say an edge is heavy if its neighborhood contains a triangle. The
set of heavy edges must form a bipartite graph.

We can then 2-color that graph such that no color class contains a heavy
edge.
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2-colorable tournaments: Bounding the edge neighborhood

Lemma: Every 2-colorable tournament can be efficiently partitioned into
two 2-colorable light tournaments.

u v

t1

t2

t3

We say an edge is heavy if its neighborhood contains a triangle. The
set of heavy edges must form a bipartite graph.

We can then 2-color that graph such that no color class contains a heavy
edge.
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2-colorable tournaments: Bounding the edge neighborhood

Lemma: Every 2-colorable tournament can be efficiently partitioned into
two 2-colorable light tournaments.

u v

t1

t2

t3

We say an edge is heavy if its neighborhood contains a triangle. The
set of heavy edges must form a bipartite graph.

We can then 2-color that graph such that no color class contains a heavy
edge.
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2-colorable tournaments: Bounding the edge neighborhood

Lemma: Every 2-colorable tournament can be efficiently partitioned into
two 2-colorable light tournaments.

u v

t1

t2

t3

We say an edge is heavy if its neighborhood contains a triangle. The
set of heavy edges must form a bipartite graph.

We can then 2-color that graph such that no color class contains a heavy
edge.
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Coloring 2-colorable tournaments

We partition the 2-colorable tournament into two 2-colorable light tour-
naments, which can each be colored with 5 colors using the decomposi-
tion lemma, resulting in the following theorem:

Theorem: Every 2-colorable tournament can be efficiently colored with
10 colors.
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Coloring 3-Colorable Tournaments

Theorem: If we can efficiently color a 3-colorable graph G with k colors,
then we can efficiently color a 3-colorable tournament with 50k colors.

Which implies the following bound using the current best bound for col-
oring 3-colorable graphs [Kawarabayashi, Thorup 2017].

Corollary: Let T be a 3-colorable tournament on n vertices. Then,
~χeff(T ) ≤ O(n.19996).

Other direction holds, too.

Problems of coloring 3-colorable graphs and 3-colorable tournaments with
constantly many colors are essentially equivalent.
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Coloring light tournaments

Recall light tournaments are tournaments with no heavy edge.

Problem: How many colors do we need to (efficiently) color light tour-
naments?

u v

t1

t2

t3

A heavy edge.

(A 2-colorable light tournament can be colored with 5 colors, but now
we are interested in general light tournaments.)
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Coloring light tournaments

It was known that light tournaments can be colored with constantly many
colors, but proof was not constructive [Berger et al. 2013].

Proof can be made algorithmic with around 35 colors.

– Light tournaments have bounded chromatic number because hero-
free (i.e., ∆(1,1, C3)-free).

– [Berger et al.] use “jewel chain” to color.

To use the decomposition lemma, we need to find a good pair and bound
the edge neighborhood.

– All edge neighborhoods are acyclic in light tournaments.

– We use jewel chain to find a good pair.

Any light tournament can be colored with at most 8 colors.

There is a light tournament that requires 3 colors. What is the truth?
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Complexity of Coloring Tournaments

• Best known result is that it is NP-hard to color k-colorable tournaments
with k colors, for k ≥ 2. [Fox, Gishboliner, Shapira, Yuster 2019].

• We show it is NP-hard to color k-colorable tournaments with 2k−1 colors.

• We show it is NP-hard to color 2-colorable tournaments with 3 colors.

• If it is NP-hard to color a 2-colorable tournament with 4 colors, then there
is no poly-time algorithm to 2-color a 2-colorable light tournament.
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Arc-bounded Tournaments

Light tournaments have χ(N(e)) ≤ 1 and have χ(T ) ≤ O(1).

[Haratyunyan, Le, Thomassé, Wu 19] showed if χ(N+(u)) ≤ t, then
χ(T ) ≤ f(t).

Theorem: if χ(N(e)) ≤ t, then χ(T ) ≤ g(t).

Question: If T or G has high chromatic number, what subgraph are
forbidden?

Conjecture: If T has high chromatic number, then it has two sets A and
B, each with high chromatic number, and all arcs from A to B [Scott,
Seymour, Tung 2023].

Conjecture: If G has high chromatic number and clique size at most
t, then it has two anti-complete sets, each with high chromatic num-
ber [Erdős, El-Zahar 1985].

[Scott, Seymour, Tung 2023] showed first implies second.

Theorem: Second conjecture implies first; Conjectures are equivalent.
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Open problems

Find a transitive subset of size greater than n/10 in 2-colorable tourna-
ments.

2-color 2-colorable light tournaments?

Get better algorithmic or complexity results for digraphs.
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