Complexité du H-Game joué sur les arêtes d'un graphe.

É. Duchêne, V. Gledel, F. Mc Inerney, N. Nisse, <u>N. Oijid</u>, A. Parreau et M. Stojaković

LIRIS, Université Lyon 1, Lyon, France

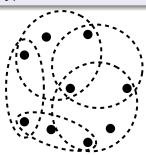
supported by ANR-21-CE48-0001 project P-GASE

23 novembre 2023

Présentation du jeu •000000

Definition (Jeu positionnel Maker-Breaker)

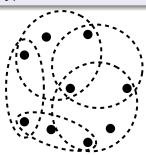
Jeu joué sur un hypergraphe H. Tour à tour Maker et Breaker prennent un sommet libre de H. Maker gagne si elle prend tous les sommets d'une hyperarête. Sinon Breaker gagne.



Présentation du jeu •000000

Definition (Jeu positionnel Maker-Breaker)

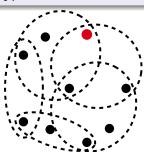
Jeu joué sur un hypergraphe H. Tour à tour Maker et Breaker prennent un sommet libre de H. Maker gagne si elle prend tous les sommets d'une hyperarête. Sinon Breaker gagne.



•000000

Definition (Jeu positionnel Maker-Breaker)

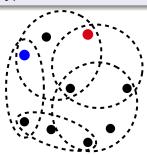
Jeu joué sur un hypergraphe H. Tour à tour Maker et Breaker prennent un sommet libre de H. Maker gagne si elle prend tous les sommets d'une hyperarête. Sinon Breaker gagne.



Présentation du jeu •000000

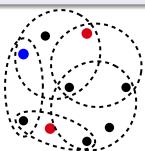
Definition (Jeu positionnel Maker-Breaker)

Jeu joué sur un hypergraphe H. Tour à tour Maker et Breaker prennent un sommet libre de H. Maker gagne si elle prend tous les sommets d'une hyperarête. Sinon Breaker gagne.



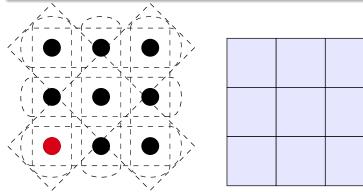
Definition (Jeu positionnel Maker-Breaker)

Jeu joué sur un hypergraphe H. Tour à tour Maker et Breaker prennent un sommet libre de H. Maker gagne si elle prend tous les sommets d'une hyperarête. Sinon Breaker gagne.



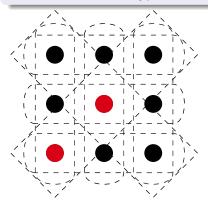
Definition (Jeu positionnel Maker-Breaker)

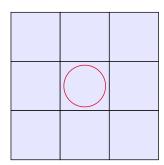
Jeu joué sur un hypergraphe H. Tour à tour Maker et Breaker prennent un sommet libre de H. Maker gagne si elle prend tous les sommets d'une hyperarête. Sinon Breaker gagne.



Definition (Jeu positionnel Maker-Breaker)

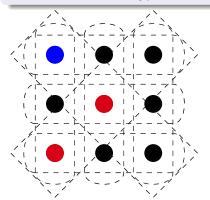
Jeu joué sur un hypergraphe H. Tour à tour Maker et Breaker prennent un sommet libre de H. Maker gagne si elle prend tous les sommets d'une hyperarête. Sinon Breaker gagne.

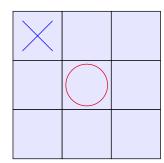




Definition (Jeu positionnel Maker-Breaker)

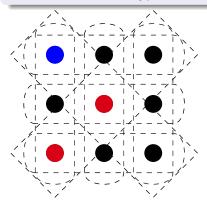
Jeu joué sur un hypergraphe H. Tour à tour Maker et Breaker prennent un sommet libre de H. Maker gagne si elle prend tous les sommets d'une hyperarête. Sinon Breaker gagne.

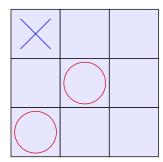




Definition (Jeu positionnel Maker-Breaker)

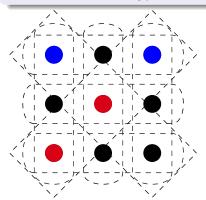
Jeu joué sur un hypergraphe H. Tour à tour Maker et Breaker prennent un sommet libre de H. Maker gagne si elle prend tous les sommets d'une hyperarête. Sinon Breaker gagne.

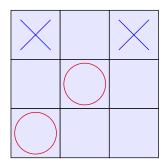




Definition (Jeu positionnel Maker-Breaker)

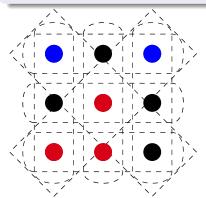
Jeu joué sur un hypergraphe H. Tour à tour Maker et Breaker prennent un sommet libre de H. Maker gagne si elle prend tous les sommets d'une hyperarête. Sinon Breaker gagne.

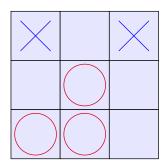




Definition (Jeu positionnel Maker-Breaker)

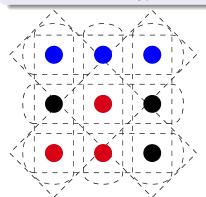
Jeu joué sur un hypergraphe H. Tour à tour Maker et Breaker prennent un sommet libre de H. Maker gagne si elle prend tous les sommets d'une hyperarête. Sinon Breaker gagne.

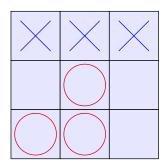




Definition (Jeu positionnel Maker-Breaker)

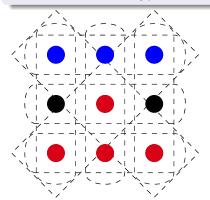
Jeu joué sur un hypergraphe H. Tour à tour Maker et Breaker prennent un sommet libre de H. Maker gagne si elle prend tous les sommets d'une hyperarête. Sinon Breaker gagne.

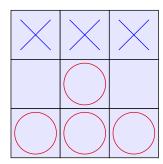




Definition (Jeu positionnel Maker-Breaker)

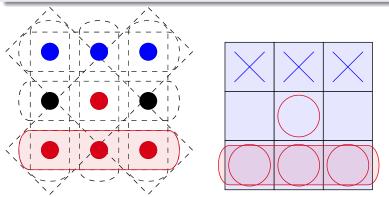
Jeu joué sur un hypergraphe H. Tour à tour Maker et Breaker prennent un sommet libre de H. Maker gagne si elle prend tous les sommets d'une hyperarête. Sinon Breaker gagne.





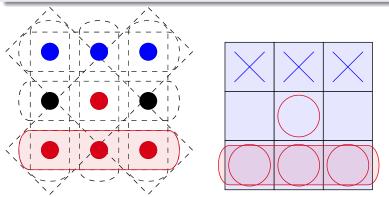
Definition (Jeu positionnel Maker-Breaker)

Jeu joué sur un hypergraphe H. Tour à tour Maker et Breaker prennent un sommet libre de H. Maker gagne si elle prend tous les sommets d'une hyperarête. Sinon Breaker gagne.



Definition (Jeu positionnel Maker-Breaker)

Jeu joué sur un hypergraphe H. Tour à tour Maker et Breaker prennent un sommet libre de H. Maker gagne si elle prend tous les sommets d'une hyperarête. Sinon Breaker gagne.



Problème étudié

Théorème

Pour tout jeu Maker -Breaker , un joueur a une stratégie gagnante.

Problème

Étant donné un jeu Maker -Breaker, quel joueur a une stratégie gagnante?

• Introduits en 1963 (Hales et Jewett)

- Introduits en 1963 (Hales et Jewett)
- Étude plus intensive depuis 1973 (Erdős et Selfridge)

- Introduits en 1963 (Hales et Jewett)
- Étude plus intensive depuis 1973 (Erdős et Selfridge)
- Deux surveys en 2008 (Beck) et 2014 (Hefetz et al.)

- Introduits en 1963 (Hales et Jewett)
- Étude plus intensive depuis 1973 (Erdős et Selfridge)
- Deux surveys en 2008 (Beck) et 2014 (Hefetz et al.)

Jeux Maker-Breaker:

 Prouvés PSPACE-complet en 1978 (Schaefer) sur les hypergraphes 11-uniformes, en 2021 pour les 6-uniformes (Rahman et Watson).

- Introduits en 1963 (Hales et Jewett)
- Étude plus intensive depuis 1973 (Erdős et Selfridge)
- Deux surveys en 2008 (Beck) et 2014 (Hefetz et al.)

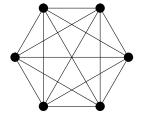
Jeux Maker-Breaker:

- Prouvés PSPACE-complet en 1978 (Schaefer) sur les hypergraphes 11-uniformes, en 2021 pour les 6-uniformes (Rahman et Watson).
- Polynomial sur les 3-uniformes en 2023 (Galliot et al.)

- Introduits en 1963 (Hales et Jewett)
- Étude plus intensive depuis 1973 (Erdős et Selfridge)
- Deux surveys en 2008 (Beck) et 2014 (Hefetz et al.)

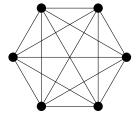
Jeux Maker-Breaker:

- Prouvés PSPACE-complet en 1978 (Schaefer) sur les hypergraphes 11-uniformes, en 2021 pour les 6-uniformes (Rahman et Watson).
- Polynomial sur les 3-uniformes en 2023 (Galliot et al.)
- W[1]-dur paramétrée par le nombre de coups en 2017 (Bonnet *et al.*)



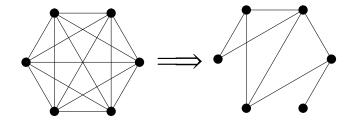
État de l'art:

• Grilles ou graphes complets.



État de l'art :

- Grilles ou graphes complets.
- Étude asymptotique et probabiliste, introduction de biais.

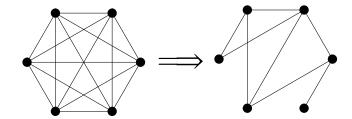


État de l'art :

- Grilles ou graphes complets.
- Étude asymptotique et probabiliste, introduction de biais.

Notre étude :

 Graphes généraux ou classes de graphes.



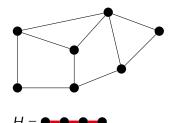
État de l'art :

- Grilles ou graphes complets.
- Étude asymptotique et probabiliste, introduction de biais.

Notre étude :

- Graphes généraux ou classes de graphes.
- Étude structurelle, calcul de complexité algorithmique.

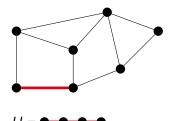
Jeu positionnel joué sur les arêtes d'un gros graphe G (avec un petit graphe H fixé).



Règles du jeu:

- Tour à tour, Maker et Breaker prennent une arête du graphe.
- Maker gagne si elle arrive à prendre une copie de H.

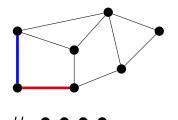
Jeu positionnel joué sur les arêtes d'un gros graphe G (avec un petit graphe H fixé).



Règles du jeu:

- Tour à tour, Maker et Breaker prennent une arête du graphe.
- Maker gagne si elle arrive à prendre une copie de H.

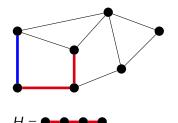
Jeu positionnel joué sur les arêtes d'un gros graphe G (avec un petit graphe H fixé).



Règles du jeu:

- Tour à tour, Maker et Breaker prennent une arête du graphe.
- Maker gagne si elle arrive à prendre une copie de H.

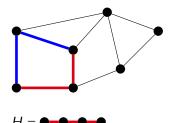
Jeu positionnel joué sur les arêtes d'un gros graphe G (avec un petit graphe H fixé).



Règles du jeu:

- Tour à tour, Maker et Breaker prennent une arête du graphe.
- Maker gagne si elle arrive à prendre une copie de H.

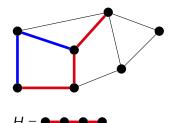
Jeu positionnel joué sur les arêtes d'un gros graphe G (avec un petit graphe H fixé).



Règles du jeu:

- Tour à tour, Maker et Breaker prennent une arête du graphe.
- Maker gagne si elle arrive à prendre une copie de H.

Jeu positionnel joué sur les arêtes d'un gros graphe G (avec un petit graphe H fixé).



Règles du jeu:

- Tour à tour, Maker et Breaker prennent une arête du graphe.
- Maker gagne si elle arrive à prendre une copie de H.

Types de resultats

Positifs

 Algorithmes polynomiaux

• Si
$$H = P_4$$

• Si $H = K_{1,k}$ et G est un arbre

Types de resultats

Positifs

 Algorithmes polynomiaux

Négatifs

 PSPACEdifficulté

 Il existe un arbre H pour lequel le H-game est PSPACE-complet.

Types de resultats

Positifs Intermédiaires

 Algorithmes polynomiaux Algorithmes FPT

Négatifs '

 PSPACEdifficulté

- Si $H = K_{1 k}$
- Si H et G est sont des arbres

Notre contribution

$H \setminus G$	Arbre	Quelconque
P_4	Polynomial	Polynomial (Galliot et. al.)
$K_{1,k}$	Polynomial	FPT*
Arbre	FPT*	PSPACE-complet

^{*} Le paramètre est le nombre de coups

Notre contribution

$H \backslash G$	Arbre	Quelconque
P_4	Linéaire	Linéaire
$K_{1,k}$	Polynomial	FPT*
Arbre	FPT*	PSPACE-complet

^{*} Le paramètre est le nombre de coups

K_{1k} -Game dans les arbres

Theorem

Le $K_{1,k}$ -game est solvable en temps linéaire dans les arbres.

Preuve pour k = 4:

Nacim Oijid H-Game 9/15

$K_{1,k}$ -Game dans les arbres

Theorem

Le $K_{1,k}$ -game est solvable en temps linéaire dans les arbres.

Preuve pour k = 4:

• Si G a un sommet de degré 7, Maker gagne.

$K_{1,k}$ -Game dans les arbres

Theorem

Le $K_{1,k}$ -game est solvable en temps linéaire dans les arbres.

Preuve pour k = 4:

- Si G a un sommet de degré 7, Maker gagne.
- Si T a au plus un sommet de degré 6, Breaker gagne.

$K_{1,k}$ -Game dans les arbres

Theorem

Le $K_{1,k}$ -game est solvable en temps linéaire dans les arbres.

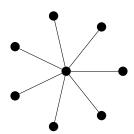
Preuve pour k = 4:

- Si *G* a un sommet de degré 7, Maker gagne.
- Si T a au plus un sommet de degré 6, Breaker gagne.
- Règle de réduction pour les sommets de degré 6.

Lemme 1

Soit G est un graphe. Si G a un sommet de degré au moins 7, Maker gagne le $K_{1,4}$ -Game sur G.

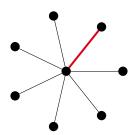
Idée : Il suffit de jouer les voisins de ce sommet.



Lemme 1

Soit G est un graphe. Si G a un sommet de degré au moins 7, Maker gagne le $K_{1,4}$ -Game sur G.

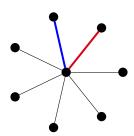
Idée : Il suffit de jouer les voisins de ce sommet.



Lemme 1

Soit G est un graphe. Si G a un sommet de degré au moins 7, Maker gagne le $K_{1,4}$ -Game sur G.

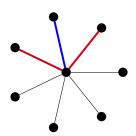
Idée : Il suffit de jouer les voisins de ce sommet.



Lemme 1

Soit G est un graphe. Si G a un sommet de degré au moins 7, Maker gagne le $K_{1,4}$ -Game sur G.

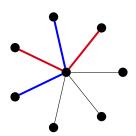
Idée : Il suffit de jouer les voisins de ce sommet.



Lemme 1

Soit G est un graphe. Si G a un sommet de degré au moins 7, Maker gagne le $K_{1,4}$ -Game sur G.

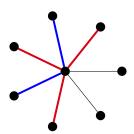
Idée : Il suffit de jouer les voisins de ce sommet.



Lemme 1

Soit G est un graphe. Si G a un sommet de degré au moins 7, Maker gagne le $K_{1,4}$ -Game sur G.

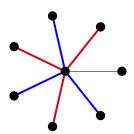
Idée : Il suffit de jouer les voisins de ce sommet.



Lemme 1

Soit G est un graphe. Si G a un sommet de degré au moins 7, Maker gagne le $K_{1,4}$ -Game sur G.

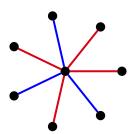
Idée : Il suffit de jouer les voisins de ce sommet.



Lemme 1

Soit G est un graphe. Si G a un sommet de degré au moins 7, Maker gagne le $K_{1,4}$ -Game sur G.

Idée : Il suffit de jouer les voisins de ce sommet.



Lemme 2

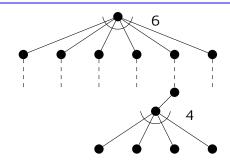
Soit T un arbre. Si T n'a pas de sommet de degré ≥ 7 et au plus un sommet de degré 6, Breaker gagne.

Lemme 2

Soit T un arbre. Si T n'a pas de sommet de degré ≥ 7 et au plus un sommet de degré 6, Breaker gagne.

Idée de la preuve :

 Enraciner l'arbre au sommet de degré 6.

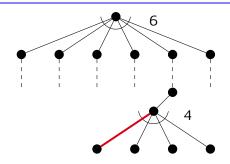


Lemme 2

Soit T un arbre. Si T n'a pas de sommet de degré ≥ 7 et au plus un sommet de degré 6, Breaker gagne.

Idée de la preuve :

- Enraciner l'arbre au sommet de degré 6.
- Breaker joue adjacent au parent de l'arête prise par Maker.

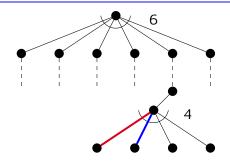


Lemme 2

Soit T un arbre. Si T n'a pas de sommet de degré ≥ 7 et au plus un sommet de degré 6, Breaker gagne.

Idée de la preuve :

- Enraciner l'arbre au sommet de degré 6.
- Breaker joue adjacent au parent de l'arête prise par Maker.

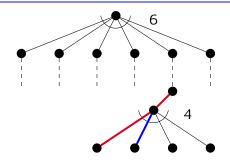


Lemme 2

Soit T un arbre. Si T n'a pas de sommet de degré ≥ 7 et au plus un sommet de degré 6, Breaker gagne.

Idée de la preuve :

- Enraciner l'arbre au sommet de degré 6.
- Breaker joue adjacent au parent de l'arête prise par Maker.

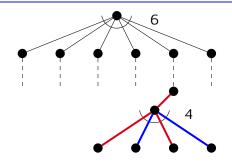


Lemme 2

Soit T un arbre. Si T n'a pas de sommet de degré ≥ 7 et au plus un sommet de degré 6, Breaker gagne.

Idée de la preuve :

- Enraciner l'arbre au sommet de degré 6.
- Breaker joue adjacent au parent de l'arête prise par Maker.

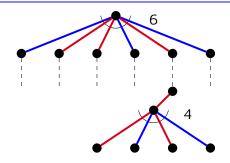


Lemme 2

Soit T un arbre. Si T n'a pas de sommet de degré ≥ 7 et au plus un sommet de degré 6, Breaker gagne.

Idée de la preuve :

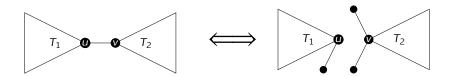
- Enraciner l'arbre au sommet de degré 6.
- Breaker joue adjacent au parent de l'arête prise par Maker.



Découpe des sommets de degré 6

Lemme 3

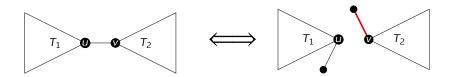
Si deg(u) = 6, les 2 arbres suivants sont équivalents.



Découpe des sommets de degré 6

Lemme 3

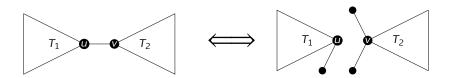
Si deg(u) = 6, les 2 arbres suivants sont équivalents.

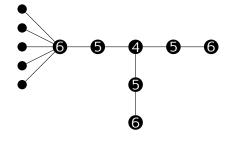


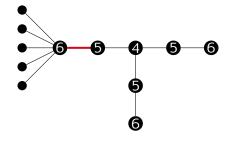
Découpe des sommets de degré 6

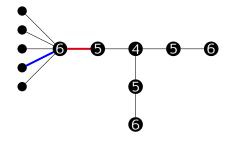
Lemme 3

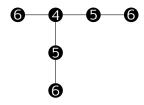
Si deg(u) = 6, les 2 arbres suivants sont équivalents.

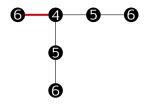


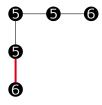


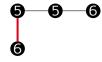












Maker gagne, par le Lemme 1

Conclusion

$H \backslash G$	Arbre	Quelconque
P_4	Linéaire	Linéaire
K _{1,k} Arbre	Polynomial	FPT*
Arbre	FPT*	PSPACE-complet

^{*} Le paramètre est le nombre de coups

Conclusion

$H \setminus G$	Arbre	Quelconque
P_4	Linéaire	Linéaire
$K_{1,k}$	Polynomial	FPT*?
$K_{1,k}$ Arbre	FPT*?	PSPACE-complet
P_k	?	?

^{*} Le paramètre est le nombre de coups

Problèmes ouverts:

• Le jeu de connectivité est solvable en temps polynomial.

Problèmes ouverts:

- Le jeu de connectivité est solvable en temps polynomial.
- Le jeu du couplage parfait est PSPACE-complet.

Problèmes ouverts:

- Le jeu de connectivité est solvable en temps polynomial.
- Le jeu du couplage parfait est PSPACE-complet.
- Complexité du jeu du cycle hamiltonien?

Discussion

Problèmes ouverts:

- Le jeu de connectivité est solvable en temps polynomial.
- Le jeu du couplage parfait est PSPACE-complet.
- Complexité du jeu du cycle hamiltonien?
- Que se passe-t-il si on joue sur les sommets?

Problèmes ouverts:

- Le jeu de connectivité est solvable en temps polynomial.
- Le jeu du couplage parfait est PSPACE-complet.
- Complexité du jeu du cycle hamiltonien?
- Que se passe-t-il si on joue sur les sommets?

MFRCI DE VOTRE ATTENTION!