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Odd-minors

Let H and G be two graphs.

H is a minor of G if H can be obtained from a subgraph of G by
contracting edges.

H is an odd-minor of G if H can be obtained from a subgraph of
G by contracting an edge cut.

Edge cut E ′: ∃ partition (A,B) of V (G) s.t. E ′ = E(A,B).

odd-minor ⇒ minor.
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Odd-minors
Examples

→ odd-minor = “minor preserving the parity of cycles”
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Odd-minors
Hierarchy
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Odd-minors
Some motivations

1. Odd-minor-free graphs generalize both minor-free graphs and
bipartite graphs.

2. Odd Hadwiger’s conjecture: If a graph excludes Kt as an
odd-minor, then it is (t − 1)-colorable. [Gerards, Seymour, ‘93]

3. MaxCut is solvable in polynomial time on K5-odd-minor-free
graphs. [Grötschel, Pulleyblank, ‘81] & [Guenin, ‘01]

4. Odd-minors-free graph classes seem well-suited to do
parameterized complexity.

5. Odd-minors are not well-studied yet.

Our objective: make a first step towards a sound algorithmic and
structural theory for odd-minors.
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An analog of treewidth for odd-minors?
Tazari’s decomposition [Tazari, ‘12], adapted from [Demaine, Hajiaghayi, Kawarabayashi,
‘10]

Tazari’s decomposition: Let G be an H-odd-minor-free graph.
Then there is a rooted tree decomposition of G s.t:
▶ the leaf-bags are H ′-minor-free,
▶ each internal bag induces a bipartite graph along with at most

kH apex vertices, and
▶ there is at most one “bipartite” vertex in the adhesion of an

internal bag and another bag.
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An analog of treewidth for odd-minors?
Bipartite tree decomposition

Bipartite tree decomposition: Tazari’s decomposition without
the H ′-minor-free leaves
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Bipartite tree decomposition
Formal definition

Bipartite tree decomposition of G: triple (T , α, β) s.t.

▶ T is a tree, α, β : V (T ) → 2V (G) (apex and bipartite),

▶ (T , α ∪ β) is a tree decomposition of G

▶ for t ∈ V (T ), G [β(t)] is bipartite

▶ for tt ′ ∈ E (T ), |β(t) ∩ (α(t ′) ∪ β(t ′))| ≤ 1 (and vice versa)

Width of (T , α, β): maxt∈V (T ) |α(t)|.

Bipartite treewidth (btw) of G : minimum width of a bipartite
tree decompositions of G .

→ odd-minor-closed
→ if replace 1 by q ≥ 2: not odd-minor-closed
→ if replace 1 by 0: H-treewidth for H = bipartite graphs.
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Bipartite tree decomposition
Not new

Bipartite treewidth was already implicitly used in previous papers
like [Kawarabayashi, Reed, ‘10] to solve Odd Cycle Transversal.

.... and other people are currently working on it like [Campbell,

Gollin, Hendrey, Wiederrecht, ‘23+].

In particular, they show the following:

Theorem [Campbell, Gollin, Hendrey, Wiederrecht, ‘23+]: There is an
algorithm that, given a graph G with btw(G ) ≤ k , outputs a
bipartite tree decomposition of G of width at most f (k) in time
g(k) · n4 log n.

What is the complexity of problems parameterized by btw?
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Problems parameterized by btw
Results

H-Subgraph-Cover: find a set S ⊆ V (G) of minimum size s.t. G \ S does

not contains H as a subgraph.

Problem Complexity Constraints on H/Running time

H-Minor-Cover

para-NP-complete, k = 0

P3 ⊆ H
H(-Induced)-Subgraph

H ∈ B, P3 ⊆ H
/Odd-Minor-Cover
H-Minor-Packing H 2-cc, |V (H)| ≥ 3

H(-Induced)-Subgraph-Packing
H ∈ B 2-cc, |V (H)| ≥ 3

/Odd-Minor/Scattered-Packing

3-Coloring para-NP-complete, k = 3

Kt-Subgraph-Cover

FPT

O(2k · (kt · (n +m) +m
√
n))

Weighted Independent Set O(2k · (k · (k + n) + n ·m))
Odd Cycle Transversal O(3k · k · n · (m + k2))

Maximum Weighted Cut O(2k · (k · (k + n) + nO(1)))

H(-Induced)-Subgraph
XP

H /∈ B 2-cc

/Odd-Minor/Scattered-Packing nO(k)

B = bipartite, P3 ⊆ H= P3 is a subgraph of H, 2-cc = 2-connected

k = bipartite treewidth
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Dynamic programming on bipartite tree decompositions
Difficulties

There are two main difficulties:

1. the size of a bag is unbounded

2. the number of children of a bag is unbounded: there is no
notion of “nice” bipartite tree decomposition

Main idea: guess what happens on each “apex” vertex of the bag,
and reduce each child to an equivalent smaller instance.
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Sketch for Weighted Independent Set
Dynamic programming

Rooted bipartite tree decomposition with “apex” vertices of bag t
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Sketch for Weighted Independent Set
Dynamic programming

Guess the apex vertices the belong to the solution (S) and those
that don’t (R).
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Sketch for Weighted Independent Set
Dynamic programming

Remove R, S , and the neighborhood of S .
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Sketch for Weighted Independent Set
Dynamic programming

wv = weight of an optimal solution on Ht′ containing v .
wv̄ = weight of an optimal solution on Ht′ not containing v .
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Sketch for Weighted Independent Set
Dynamic programming

Solve the problem on the new bipartite bag t.
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Results

Problem Complexity Constraints on H/Running time
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Open questions

▶ H-Subgraph/Odd-Minor-Packing FPT when H is 2-connected
non-bipartite?

XP when H is not bipartite and not
2-connected? First open case: H = paw.

▶ H-Subgraph-Cover when H is not bipartite and is not a
clique? First open cases: H = C5, or H = paw.

▶ Can we use bipartite treewidth to deal with problems related
to odd-minors? Currently working on it.

Thank you!
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