Dynamic programming on bipartite tree decompositions

Lars Jaffke ${ }^{1}$, Laure Morelle ${ }^{2}$, Ignasi Sau ${ }^{2}$, Dimitrios M. Thilikos ${ }^{2}$

JGA 2023
${ }^{1}$ Department of Informatics, University of Bergen, Norway ${ }^{2}$ CNRS, LIRMM, Université de Montpellier, France

Odd-minors

Let H and G be two graphs.

Odd-minors

Let H and G be two graphs.
H is a minor of G if H can be obtained from a subgraph of G by contracting edges.

Odd-minors

Let H and G be two graphs.
H is a minor of G if H can be obtained from a subgraph of G by contracting edges.
H is an odd-minor of G if H can be obtained from a subgraph of G by contracting an edge cut.

Edge cut $E^{\prime}: \exists$ partition (A, B) of $V(G)$ s.t. $E^{\prime}=E(A, B)$.

Odd-minors

Let H and G be two graphs.
H is a minor of G if H can be obtained from a subgraph of G by contracting edges.
H is an odd-minor of G if H can be obtained from a subgraph of G by contracting an edge cut.

Edge cut $E^{\prime}: \exists$ partition (A, B) of $V(G)$ s.t. $E^{\prime}=E(A, B)$.
odd-minor \Rightarrow minor.

Odd-minors

Examples

Odd-minors

Examples

\rightarrow odd-minor $=$ "minor preserving the parity of cycles"

Odd-minors
Hierarchy

Odd-minors

Some motivations

Odd-minors

Some motivations

1. Odd-minor-free graphs generalize both minor-free graphs and bipartite graphs.

Odd-minors

Some motivations

1. Odd-minor-free graphs generalize both minor-free graphs and bipartite graphs.
2. Odd Hadwiger's conjecture: If a graph excludes K_{t} as an odd-minor, then it is $(t-1)$-colorable. [Gerards, Seymour, '93]

Odd-minors

Some motivations

1. Odd-minor-free graphs generalize both minor-free graphs and bipartite graphs.
2. Odd Hadwiger's conjecture: If a graph excludes K_{t} as an odd-minor, then it is $(t-1)$-colorable. [Gerards, Seymour, '93]
3. MaxCut is solvable in polynomial time on K_{5}-odd-minor-free graphs. [Grötschel, Pulleyblank, '81] \& [Guenin, '01]

Odd-minors

Some motivations

1. Odd-minor-free graphs generalize both minor-free graphs and bipartite graphs.
2. Odd Hadwiger's conjecture: If a graph excludes K_{t} as an odd-minor, then it is $(t-1)$-colorable. [Gerards, Seymour, '93]
3. MaxCut is solvable in polynomial time on K_{5}-odd-minor-free graphs. [Grötschel, Pulleyblank, '81] \& [Guenin, '01]
4. Odd-minors-free graph classes seem well-suited to do parameterized complexity.

Odd-minors

Some motivations

1. Odd-minor-free graphs generalize both minor-free graphs and bipartite graphs.
2. Odd Hadwiger's conjecture: If a graph excludes K_{t} as an odd-minor, then it is $(t-1)$-colorable. [Gerards, Seymour, '93]
3. MaxCut is solvable in polynomial time on K_{5}-odd-minor-free graphs. [Grötschel, Pulleyblank, '81] \& [Guenin, '01]
4. Odd-minors-free graph classes seem well-suited to do parameterized complexity.
5. Odd-minors are not well-studied yet.

Odd-minors

Some motivations

1. Odd-minor-free graphs generalize both minor-free graphs and bipartite graphs.
2. Odd Hadwiger's conjecture: If a graph excludes K_{t} as an odd-minor, then it is $(t-1)$-colorable. [Gerards, Seymour, '93]
3. MaxCut is solvable in polynomial time on K_{5}-odd-minor-free graphs. [Grötschel, Pulleyblank, '81] \& [Guenin, '01]
4. Odd-minors-free graph classes seem well-suited to do parameterized complexity.
5. Odd-minors are not well-studied yet.

Our objective: make a first step towards a sound algorithmic and structural theory for odd-minors.

An analog of treewidth for odd-minors?

Tazari's decomposition [Tazari, '12], adapted from [Demaine, Hajiaghayi, Kawarabayashi, '10]

An analog of treewidth for odd-minors?

Tazari's decomposition [Tazari, '12], adapted from [Demaine, Hajiaghayi, Kawarabayashi, '10]

Tazari's decomposition: Let G be an H-odd-minor-free graph.
Then there is a rooted tree decomposition of G s.t:

- the leaf-bags are H^{\prime}-minor-free,
- each internal bag induces a bipartite graph along with at most k_{H} apex vertices, and
- there is at most one "bipartite" vertex in the adhesion of an internal bag and another bag.

An analog of treewidth for odd-minors?
Bipartite tree decomposition
Bipartite tree decomposition: Tazari's decomposition without the H^{\prime}-minor-free leaves

Bipartite tree decomposition

Formal definition

Bipartite tree decomposition of G : triple (T, α, β) s.t.

- T is a tree, $\alpha, \beta: V(T) \rightarrow 2^{V(G)}$ (apex and bipartite),
- $(T, \alpha \cup \beta)$ is a tree decomposition of G
- for $t \in V(T), G[\beta(t)]$ is bipartite
- for $t t^{\prime} \in E(T),\left|\beta(t) \cap\left(\alpha\left(t^{\prime}\right) \cup \beta\left(t^{\prime}\right)\right)\right| \leq 1$ (and vice versa)

Width of $(T, \alpha, \beta): \max _{t \in V(T)}|\alpha(t)|$.
Bipartite treewidth (btw) of G : minimum width of a bipartite tree decompositions of G.

Bipartite tree decomposition

Formal definition

Bipartite tree decomposition of G : triple (T, α, β) s.t.

- T is a tree, $\alpha, \beta: V(T) \rightarrow 2^{V(G)}$ (apex and bipartite),
- $(T, \alpha \cup \beta)$ is a tree decomposition of G
- for $t \in V(T), G[\beta(t)]$ is bipartite
- for $t t^{\prime} \in E(T),\left|\beta(t) \cap\left(\alpha\left(t^{\prime}\right) \cup \beta\left(t^{\prime}\right)\right)\right| \leq 1$ (and vice versa)

Width of $(T, \alpha, \beta): \max _{t \in V(T)}|\alpha(t)|$.
Bipartite treewidth (btw) of G : minimum width of a bipartite tree decompositions of G.
\rightarrow odd-minor-closed

Bipartite tree decomposition

Formal definition

Bipartite tree decomposition of G : triple (T, α, β) s.t.

- T is a tree, $\alpha, \beta: V(T) \rightarrow 2^{V(G)}$ (apex and bipartite),
- $(T, \alpha \cup \beta)$ is a tree decomposition of G
- for $t \in V(T), G[\beta(t)]$ is bipartite
- for $t t^{\prime} \in E(T),\left|\beta(t) \cap\left(\alpha\left(t^{\prime}\right) \cup \beta\left(t^{\prime}\right)\right)\right| \leq 1$ (and vice versa)

Width of $(T, \alpha, \beta): \max _{t \in V(T)}|\alpha(t)|$.
Bipartite treewidth (btw) of G : minimum width of a bipartite tree decompositions of G.
\rightarrow odd-minor-closed
\rightarrow if replace 1 by $q \geq 2$: not odd-minor-closed

Bipartite tree decomposition

Formal definition

Bipartite tree decomposition of G : triple (T, α, β) s.t.

- T is a tree, $\alpha, \beta: V(T) \rightarrow 2^{V(G)}$ (apex and bipartite),
- $(T, \alpha \cup \beta)$ is a tree decomposition of G
- for $t \in V(T), G[\beta(t)]$ is bipartite
- for $t t^{\prime} \in E(T),\left|\beta(t) \cap\left(\alpha\left(t^{\prime}\right) \cup \beta\left(t^{\prime}\right)\right)\right| \leq 1$ (and vice versa)

Width of $(T, \alpha, \beta): \max _{t \in V(T)}|\alpha(t)|$.
Bipartite treewidth (btw) of G : minimum width of a bipartite tree decompositions of G.
\rightarrow odd-minor-closed
\rightarrow if replace 1 by $q \geq 2$: not odd-minor-closed
\rightarrow if replace 1 by $0: \mathcal{H}$-treewidth for $\mathcal{H}=$ bipartite graphs.

Bipartite tree decomposition

Not new

Bipartite tree decomposition

Not new

Bipartite treewidth was already implicitly used in previous papers like [Kawarabayashi, Reed, '10] to solve Odd Cycle Transversal.

Bipartite tree decomposition

Not new

Bipartite treewidth was already implicitly used in previous papers like [Kawarabayashi, Reed, '10] to solve Odd Cycle Transversal.
.... and other people are currently working on it like [Campbell, Gollin, Hendrey, Wiederrecht, ' 23^{+}].

Bipartite tree decomposition

Not new

Bipartite treewidth was already implicitly used in previous papers like [Kawarabayashi, Reed, '10] to solve Odd Cycle Transversal.
.... and other people are currently working on it like [Campbell, Gollin, Hendrey, Wiederrecht, ' 23^{+}].

In particular, they show the following:
Theorem [Campbell, Gollin, Hendrey, Wiederrecht, '23+]: There is an algorithm that, given a graph G with $\operatorname{btw}(G) \leq k$, outputs a bipartite tree decomposition of G of width at most $f(k)$ in time $g(k) \cdot n^{4} \log n$.

Bipartite tree decomposition

Not new

Bipartite treewidth was already implicitly used in previous papers like [Kawarabayashi, Reed, '10] to solve Odd Cycle Transversal.
.... and other people are currently working on it like [Campbell, Gollin, Hendrey, Wiederrecht, ' 23^{+}].

In particular, they show the following:
Theorem [Campbell, Gollin, Hendrey, Wiederrecht, '23+]: There is an algorithm that, given a graph G with $\operatorname{btw}(G) \leq k$, outputs a bipartite tree decomposition of G of width at most $f(k)$ in time $g(k) \cdot n^{4} \log n$.

What is the complexity of problems parameterized by btw?

Problems parameterized by btw

Results

H-Subgraph-Cover: find a set $S \subseteq V(G)$ of minimum size s.t. $G \backslash S$ does not contains H as a subgraph.

Problem	Complexity	Constraints on $\mathrm{H} /$ Running time
H-Minor-Cover H(-Induced)-SubGraph / Odd-Minor-Cover H-Minor-Packing H(-Induced)-SubGraph-Packing /Odd-Minor/Scattered-Packing	para-NP-complete, $k=0$	$\begin{gathered} P_{3} \subseteq H \\ H \in \mathcal{B}, P_{3} \subseteq H \\ H 2-\mathrm{cc},\|V(H)\| \geq 3 \\ H \in \mathcal{B} 2-\mathrm{cc},\|V(H)\| \geq 3 \end{gathered}$
3-Coloring	para-NP-complete, $k=3$	
$K_{t} \text {-SUBGRAPH-COVER }$ Weighted Independent Set Odd Cycle Transversal Maximum Weighted Cut	FPT	$\begin{gathered} \mathcal{O}\left(2^{k} \cdot\left(k^{t} \cdot(n+m)+m \sqrt{n}\right)\right) \\ \mathcal{O}\left(2^{k} \cdot(k \cdot(k+n)+n \cdot m)\right) \\ \mathcal{O}\left(3^{k} \cdot k \cdot n \cdot\left(m+k^{2}\right)\right) \\ \mathcal{O}\left(2^{k} \cdot\left(k \cdot(k+n)+n^{\mathcal{O}(1)}\right)\right) \end{gathered}$
H(-Induced)-SuBGRAPH $/$ OdD-Minor/SCATTERED-PACKING	XP	$\begin{gathered} H \notin \mathcal{B} 2-\mathrm{cc} \\ n^{\mathcal{O}(k)} \end{gathered}$

$\mathcal{B}=$ bipartite, $P_{3} \subseteq H=P_{3}$ is a subgraph of $H, 2$-cc $=2$-connected
$k=$ bipartite treewidth

Dynamic programming on bipartite tree decompositions Difficulties

There are two main difficulties:

Dynamic programming on bipartite tree decompositions Difficulties

There are two main difficulties:

1. the size of a bag is unbounded

Dynamic programming on bipartite tree decompositions

 DifficultiesThere are two main difficulties:

1. the size of a bag is unbounded
2. the number of children of a bag is unbounded: there is no notion of "nice" bipartite tree decomposition

Dynamic programming on bipartite tree decompositions

 DifficultiesThere are two main difficulties:

1. the size of a bag is unbounded
2. the number of children of a bag is unbounded: there is no notion of "nice" bipartite tree decomposition

Main idea: guess what happens on each "apex" vertex of the bag, and reduce each child to an equivalent smaller instance.

Sketch for Weighted Independent Set

Dynamic programming

Rooted bipartite tree decomposition with "apex" vertices of bag t

Sketch for Weighted Independent Set

Dynamic programming

Guess the apex vertices the belong to the solution (S) and those that don't (R).

Sketch for Weighted Independent Set

Dynamic programming

Remove R, S, and the neighborhood of S.

Sketch for Weighted Independent Set

Dynamic programming

$w_{v}=$ weight of an optimal solution on $H_{t^{\prime}}$ containing v. $w_{\bar{v}}=$ weight of an optimal solution on $H_{t^{\prime}}$ not containing v.

Sketch for Weighted Independent Set

Dynamic programming

$w_{v}=$ weight of the optimal solution on $H_{t^{\prime}}$ containing v. $w_{\bar{v}}=$ weight of the optimal solution on $H_{t^{\prime}}$ not containing v.

Sketch for Weighted Independent Set

Dynamic programming
Solve the problem on the new bipartite bag t.

Results

Problem	Complexity	Constraints on $H /$ Running time
H-MINOR-COVER		$P_{3} \subseteq H$
H(-INDUCED)-SUBGRAPH		$H \in \mathcal{B}, P_{3} \subseteq H$
/ODD-MINOR-COVER		$H 2-c c,\|V(H)\| \geq 3$
H-MINOR-PACKING	para-NP-complete, $k=0$	$H \in \mathcal{B} 2-\mathrm{cc},\|V(H)\| \geq 3$
H(-INDUCED)-SUBGRAPH-PACKING		
/ODD-MINOR/SCATTERED-PACKING		$\mathcal{O}\left(2^{k} \cdot\left(k^{t} \cdot(n+m)+m \sqrt{n}\right)\right)$
3-COLORING	para-NP-complete, $k=3$	$\mathcal{O}\left(2^{k} \cdot(k \cdot(k+n)+n \cdot m)\right)$
K_{t}-SUBGRAPH-COVER	$\mathcal{O}\left(3^{k} \cdot k \cdot n \cdot\left(m+k^{2}\right)\right)$	
WEIGHTED INDEPENDENT SET		$\mathcal{O}\left(2^{k} \cdot\left(k \cdot(k+n)+n^{\mathcal{O}(1)}\right)\right)$
OdD CYCLE TRANSVERSAL	FPT	$H \notin \mathcal{B} 2-c c$
MAXIMUM WEIGHTED CUT		$n \mathcal{O}(k)$
H(-INDUCED)-SUBGRAPH	XP	
/ODD-MINOR/SCATTERED-PACKING		

$\mathcal{B}=$ bipartite, $P_{3} \subseteq H=P_{3}$ is a subgraph of H, 2-cc $=2$-connected
$k=$ bipartite treewidth

Results

Problem	Complexity	Constraints on H /Running time
	para-NP-complete, $k=0$	$\begin{gathered} P_{3} \subseteq H \\ H \in \mathcal{B}, P_{3} \subseteq H \\ H 2-\mathrm{cc},\|V(H)\| \geq 3 \\ H \in \mathcal{B} 2-\mathrm{cc},\|V(H)\| \geq 3 \end{gathered}$
3-Coloring	para-NP-complete, $k=3$	
K_{t}-SUBGRAPH-COVER Weighted Independent Set Odd Cycle Transversal Maximum Weighted Cut	FPT	$\begin{gathered} \mathcal{O}\left(2^{k} \cdot\left(k^{t} \cdot(n+m)+m \sqrt{n}\right)\right) \\ \mathcal{O}\left(2^{k} \cdot(k \cdot(k+n)+n \cdot m)\right) \\ \mathcal{O}\left(3^{k} \cdot k \cdot n \cdot\left(m+k^{2}\right)\right) \\ \mathcal{O}\left(2^{k} \cdot\left(k \cdot(k+n)+n^{\mathcal{O}(1)}\right)\right) \end{gathered}$
H(-Induced)-SubGraph /OdD-Minor/Scattered-Packing	XP	$\begin{gathered} H \notin \mathcal{B} 2-\mathrm{cc} \\ n^{\mathcal{O}(k)} \end{gathered}$

$\mathcal{B}=$ bipartite, $P_{3} \subseteq H=P_{3}$ is a subgraph of H, 2-cc $=2$-connected
$k=$ bipartite treewidth

Open questions

- H-Subgraph/Odd-Minor-Packing FPT when H is 2-connected non-bipartite?

Open questions

- H-Subgraph/Odd-Minor-Packing FPT when H is 2-connected non-bipartite? XP when H is not bipartite and not 2-connected? First open case: $H=$ paw.

Open questions

- H-Subgraph/Odd-Minor-Packing FPT when H is 2-connected non-bipartite? XP when H is not bipartite and not 2-connected? First open case: $H=$ paw.
- H-Subgraph-Cover when H is not bipartite and is not a clique? First open cases: $H=C_{5}$, or $H=$ paw.

Open questions

- H-Subgraph/Odd-Minor-Packing FPT when H is 2-connected non-bipartite? XP when H is not bipartite and not 2-connected? First open case: $H=$ paw.
- H-Subgraph-Cover when H is not bipartite and is not a clique? First open cases: $H=C_{5}$, or $H=$ paw.
- Can we use bipartite treewidth to deal with problems related to odd-minors? Currently working on it.

Open questions

- H-Subgraph/Odd-Minor-Packing FPT when H is 2-connected non-bipartite? XP when H is not bipartite and not 2-connected? First open case: $H=$ paw.
- H-Subgraph-Cover when H is not bipartite and is not a clique? First open cases: $H=C_{5}$, or $H=$ paw.
- Can we use bipartite treewidth to deal with problems related to odd-minors? Currently working on it.

Thank you!

