Dynamic programming on bipartite tree decompositions

Lars Jaffke¹, <u>Laure Morelle</u>², Ignasi Sau², Dimitrios M. Thilikos²

JGA 2023

¹Department of Informatics, University of **Bergen, Norway** ²CNRS, LIRMM, Université de **Montpellier, France** → (**B**→ (**B**→ (**B**→ (**B**))) = (**O**) < **C**

Let H and G be two graphs.

Let H and G be two graphs.

H is a **minor** of *G* if *H* can be obtained from a subgraph of *G* by contracting edges.

Let H and G be two graphs.

H is a **minor** of *G* if *H* can be obtained from a subgraph of *G* by contracting edges.

H is an **odd-minor** of *G* if *H* can be obtained from a subgraph of *G* by contracting an edge cut.

Edge cut E': \exists partition (A, B) of V(G) s.t. E' = E(A, B).

Let H and G be two graphs.

H is a **minor** of *G* if *H* can be obtained from a subgraph of *G* by contracting edges.

H is an **odd-minor** of *G* if *H* can be obtained from a subgraph of *G* by contracting an edge cut.

Edge cut E': \exists partition (A, B) of V(G) s.t. E' = E(A, B).

odd-minor \Rightarrow minor.

Examples

Examples

 \rightarrow odd-minor = "minor preserving the parity of cycles" $_{\rm abs}$, $_{\rm abs}$

Hierarchy

Some motivations

1. Odd-minor-free graphs generalize both minor-free graphs and bipartite graphs.

- 1. Odd-minor-free graphs generalize both minor-free graphs and bipartite graphs.
- 2. Odd Hadwiger's conjecture: If a graph excludes K_t as an odd-minor, then it is (t 1)-colorable. [Gerards, Seymour, '93]

- 1. Odd-minor-free graphs generalize both minor-free graphs and bipartite graphs.
- 2. Odd Hadwiger's conjecture: If a graph excludes K_t as an odd-minor, then it is (t 1)-colorable. [Gerards, Seymour, '93]
- MAXCUT is solvable in polynomial time on K₅-odd-minor-free graphs. [Grötschel, Pulleyblank, '81] & [Guenin, '01]

- 1. Odd-minor-free graphs generalize both minor-free graphs and bipartite graphs.
- 2. Odd Hadwiger's conjecture: If a graph excludes K_t as an odd-minor, then it is (t 1)-colorable. [Gerards, Seymour, '93]
- MAXCUT is solvable in polynomial time on K₅-odd-minor-free graphs. [Grötschel, Pulleyblank, '81] & [Guenin, '01]
- 4. Odd-minors-free graph classes seem well-suited to do parameterized complexity.

- 1. Odd-minor-free graphs generalize both minor-free graphs and bipartite graphs.
- 2. Odd Hadwiger's conjecture: If a graph excludes K_t as an odd-minor, then it is (t 1)-colorable. [Gerards, Seymour, '93]
- MAXCUT is solvable in polynomial time on K₅-odd-minor-free graphs. [Grötschel, Pulleyblank, '81] & [Guenin, '01]
- 4. Odd-minors-free graph classes seem well-suited to do parameterized complexity.
- 5. Odd-minors are not well-studied yet.

Some motivations

- 1. Odd-minor-free graphs generalize both minor-free graphs and bipartite graphs.
- 2. Odd Hadwiger's conjecture: If a graph excludes K_t as an odd-minor, then it is (t 1)-colorable. [Gerards, Seymour, '93]
- MAXCUT is solvable in polynomial time on K₅-odd-minor-free graphs. [Grötschel, Pulleyblank, '81] & [Guenin, '01]
- 4. Odd-minors-free graph classes seem well-suited to do parameterized complexity.
- 5. Odd-minors are not well-studied yet.

Our objective: make a first step towards a sound algorithmic and structural theory for odd-minors.

An analog of treewidth for odd-minors?

Tazari's decomposition [Tazari, '12], adapted from [Demaine, Hajiaghayi, Kawarabayashi, '10]

An analog of treewidth for odd-minors?

Tazari's decomposition [Tazari, '12], adapted from [Demaine, Hajiaghayi, Kawarabayashi, '10]

Tazari's decomposition: Let G be an H-odd-minor-free graph.

Then there is a rooted tree decomposition of G s.t:

- ▶ the leaf-bags are *H*′-minor-free,
- each internal bag induces a bipartite graph along with at most k_H apex vertices, and
- there is at most one "bipartite" vertex in the adhesion of an internal bag and another bag.

An analog of treewidth for odd-minors?

Bipartite tree decomposition

Bipartite tree decomposition: Tazari's decomposition without the H'-minor-free leaves

Formal definition

Bipartite tree decomposition of G: triple (T, α, β) s.t.

- T is a tree, $\alpha, \beta : V(T) \rightarrow 2^{V(G)}$ (apex and bipartite),
- $(T, \alpha \cup \beta)$ is a tree decomposition of *G*
- for $t \in V(T)$, $G[\beta(t)]$ is bipartite
- ► for $tt' \in E(T)$, $|\beta(t) \cap (\alpha(t') \cup \beta(t'))| \le 1$ (and vice versa)

Width of (T, α, β) : $\max_{t \in V(T)} |\alpha(t)|$.

Bipartite treewidth (btw) of G: minimum width of a bipartite tree decompositions of G.

Formal definition

Bipartite tree decomposition of G: triple (T, α, β) s.t.

- T is a tree, $\alpha, \beta : V(T) \rightarrow 2^{V(G)}$ (apex and bipartite),
- $(T, \alpha \cup \beta)$ is a tree decomposition of *G*
- for $t \in V(T)$, $G[\beta(t)]$ is bipartite
- ► for $tt' \in E(T)$, $|\beta(t) \cap (\alpha(t') \cup \beta(t'))| \le 1$ (and vice versa)

Width of (T, α, β) : $\max_{t \in V(T)} |\alpha(t)|$.

Bipartite treewidth (btw) of G: minimum width of a bipartite tree decompositions of G.

 $\rightarrow \mathsf{odd}\text{-minor-closed}$

Formal definition

Bipartite tree decomposition of G: triple (T, α, β) s.t.

- T is a tree, $\alpha, \beta : V(T) \rightarrow 2^{V(G)}$ (apex and bipartite),
- $(T, \alpha \cup \beta)$ is a tree decomposition of *G*
- for $t \in V(T)$, $G[\beta(t)]$ is bipartite
- ► for $tt' \in E(T)$, $|\beta(t) \cap (\alpha(t') \cup \beta(t'))| \le 1$ (and vice versa)

Width of (T, α, β) : $\max_{t \in V(T)} |\alpha(t)|$.

Bipartite treewidth (btw) of G: minimum width of a bipartite tree decompositions of G.

 $\rightarrow \text{odd-minor-closed}$

 \rightarrow if replace 1 by $q \ge 2$: not odd-minor-closed

Formal definition

Bipartite tree decomposition of G: triple (T, α, β) s.t.

- T is a tree, $\alpha, \beta : V(T) \rightarrow 2^{V(G)}$ (apex and bipartite),
- $(T, \alpha \cup \beta)$ is a tree decomposition of *G*
- for $t \in V(T)$, $G[\beta(t)]$ is bipartite
- ► for $tt' \in E(T)$, $|\beta(t) \cap (\alpha(t') \cup \beta(t'))| \le 1$ (and vice versa)

Width of (T, α, β) : $\max_{t \in V(T)} |\alpha(t)|$.

Bipartite treewidth (btw) of G: minimum width of a bipartite tree decompositions of G.

- $\rightarrow \text{odd-minor-closed}$
- \rightarrow if replace 1 by $q \ge 2$: not odd-minor-closed
- \rightarrow if replace 1 by 0: $\mathcal H\text{-treewidth}$ for $\mathcal H=$ bipartite graphs.

Not new

Not new

Bipartite treewidth was already implicitly used in previous papers like [Kawarabayashi, Reed, '10] to solve ODD CYCLE TRANSVERSAL.

Not new

Bipartite treewidth was already implicitly used in previous papers like [Kawarabayashi, Reed, '10] to solve ODD CYCLE TRANSVERSAL.

.... and other people are currently working on it like [Campbell, Gollin, Hendrey, Wiederrecht, '23⁺].

Not new

Bipartite treewidth was already implicitly used in previous papers like [Kawarabayashi, Reed, '10] to solve ODD CYCLE TRANSVERSAL.

.... and other people are currently working on it like [Campbell, Gollin, Hendrey, Wiederrecht, '23⁺].

In particular, they show the following:

Theorem [Campbell, Gollin, Hendrey, Wiederrecht, '23⁺]: There is an algorithm that, given a graph G with $btw(G) \le k$, outputs a bipartite tree decomposition of G of width at most f(k) in time $g(k) \cdot n^4 \log n$.

Not new

Bipartite treewidth was already implicitly used in previous papers like [Kawarabayashi, Reed, '10] to solve ODD CYCLE TRANSVERSAL.

.... and other people are currently working on it like [Campbell, Gollin, Hendrey, Wiederrecht, '23⁺].

In particular, they show the following:

Theorem [Campbell, Gollin, Hendrey, Wiederrecht, '23⁺]: There is an algorithm that, given a graph G with $btw(G) \le k$, outputs a bipartite tree decomposition of G of width at most f(k) in time $g(k) \cdot n^4 \log n$.

What is the complexity of problems parameterized by btw?

Problems parameterized by btw

Results

H-SUBGRAPH-COVER: find a set $S \subseteq V(G)$ of minimum size s.t. $G \setminus S$ does not contains H as a subgraph.

Problem	Complexity	Constraints on H /Running time
H-MINOR-COVER		$P_3 \subseteq H$
H(-INDUCED)-SUBGRAPH		$H \in \mathcal{B}, P_3 \subseteq H$
/Odd-Minor-Cover		$m \in D, r_3 \subseteq m$
H-MINOR-PACKING	para-NP-complete, $k = 0$	H 2-cc, $ V(H) \ge 3$
H(-INDUCED)-SUBGRAPH-PACKING		$H \in \mathcal{B}$ 2-cc, $ V(H) > 3$
/Odd-Minor/Scattered-Packing		$ 1 \in D$ 2-cc, $ V(11) \ge 3$
3-Coloring	para-NP-complete, $k = 3$	
K_t -Subgraph-Cover		$\mathcal{O}(2^k \cdot (k^t \cdot (n+m) + m\sqrt{n}))$
Weighted Independent Set	FPT	$\mathcal{O}(2^k \cdot (k \cdot (k+n) + n \cdot m))$
ODD CYCLE TRANSVERSAL		$\mathcal{O}(3^k \cdot k \cdot n \cdot (m+k^2))$
Maximum Weighted Cut		$\mathcal{O}(2^k \cdot (k \cdot (k+n) + n^{\mathcal{O}(1)}))$
H(-INDUCED)-SUBGRAPH	ХР	<i>H</i> ∉ <i>B</i> 2-cc
/Odd-Minor/Scattered-Packing		$n^{\mathcal{O}(k)}$

 $\mathcal{B} = \text{bipartite}, P_3 \subseteq H = P_3 \text{ is a subgraph of } H, 2\text{-cc} = 2\text{-connected}$

k = bipartite treewidth

There are two main difficulties:

There are two main difficulties:

1. the size of a bag is unbounded

There are two main difficulties:

- 1. the size of a bag is unbounded
- 2. the number of children of a bag is unbounded: there is no notion of "nice" bipartite tree decomposition

There are two main difficulties:

- 1. the size of a bag is unbounded
- 2. the number of children of a bag is unbounded: there is no notion of "nice" bipartite tree decomposition

Main idea: guess what happens on each "apex" vertex of the bag, and reduce each child to an equivalent smaller instance.

Sketch for $\operatorname{Weighted}$ Independent Set

Dynamic programming

Rooted bipartite tree decomposition with "apex" vertices of bag t

12/21

Sketch for $\operatorname{Weighted}$ Independent Set

Dynamic programming

Guess the apex vertices the belong to the solution (S) and those that don't (R).

Sketch for $\operatorname{Weighted}$ Independent Set

Dynamic programming

Remove R, S, and the neighborhood of S.

Sketch for WEIGHTED INDEPENDENT SET

Dynamic programming

- w_v = weight of an optimal solution on $H_{t'}$ containing v.
- $w_{\bar{v}}$ = weight of an optimal solution on $H_{t'}$ not containing v.

Sketch for WEIGHTED INDEPENDENT SET

Dynamic programming

- w_v = weight of the optimal solution on $H_{t'}$ containing v.
- $w_{\bar{v}}$ = weight of the optimal solution on $H_{t'}$ not containing v.

▲ ■ シュペ 16/21

Sketch for WEIGHTED INDEPENDENT SET Dynamic programming

Solve the problem on the new bipartite bag t.

Results

Problem	Complexity	Constraints on <i>H</i> /Running time
H-MINOR-COVER		$P_3 \subseteq H$
H(-INDUCED)-SUBGRAPH		$H \in \mathcal{B}, P_3 \subset H$
/Odd-Minor-Cover		$\Pi \in D, \Gamma_3 \subseteq \Pi$
H-Minor-Packing	para-NP-complete, $k = 0$	H 2-cc, $ V(H) \ge 3$
H(-INDUCED $)-$ SUBGRAPH-PACKING		$H \in \mathcal{B}$ 2-cc, $ V(H) \geq 3$
/Odd-Minor/Scattered-Packing		$H \in D$ 2-cc, $ V(H) \geq 3$
3-Coloring	para-NP-complete, $k = 3$	
K_t -Subgraph-Cover		$\mathcal{O}(2^k \cdot (k^t \cdot (n+m) + m\sqrt{n}))$
Weighted Independent Set	FPT	$\mathcal{O}(2^k \cdot (k \cdot (k+n) + n \cdot m))$
ODD CYCLE TRANSVERSAL		$\mathcal{O}(3^k \cdot k \cdot n \cdot (m+k^2))$
Maximum Weighted Cut		$\mathcal{O}(2^k \cdot (k \cdot (k+n) + n^{\mathcal{O}(1)}))$
H(-INDUCED)-SUBGRAPH	ХР	<i>H</i> ∉ <i>B</i> 2-cc
/Odd-Minor/Scattered-Packing		$n^{\mathcal{O}(k)}$

- $\mathcal{B} = \text{bipartite}, P_3 \subseteq H = P_3 \text{ is a subgraph of } H, 2\text{-cc} = 2\text{-connected}$
- k = bipartite treewidth

Results

Problem	Complexity	Constraints on <i>H</i> /Running time
H-MINOR-COVER		$P_3 \subseteq H$
H(-INDUCED)-SUBGRAPH		$H \in \mathcal{B}, P_3 \subset H$
/Odd-Minor-Cover		$\Pi \in D, \Gamma_3 \subseteq \Pi$
H-Minor-Packing	para-NP-complete, $k = 0$	H 2-cc, $ V(H) \ge 3$
H(-INDUCED)-SUBGRAPH-PACKING		$H \in \mathcal{B}$ 2-cc, $ V(H) > 3$
/Odd-Minor/Scattered-Packing		$H \in D$ 2-cc, $ V(H) \geq 3$
3-Coloring	para-NP-complete, $k = 3$	
K_t -Subgraph-Cover		$\mathcal{O}(2^k \cdot (k^t \cdot (n+m) + m\sqrt{n}))$
Weighted Independent Set	FPT	$\mathcal{O}(2^k \cdot (k \cdot (k+n) + n \cdot m))$
ODD CYCLE TRANSVERSAL	FF I	$\mathcal{O}(3^k \cdot k \cdot n \cdot (m+k^2))$
Maximum Weighted Cut		$\mathcal{O}(2^k \cdot (k \cdot (k+n) + n^{\mathcal{O}(1)}))$
H(-INDUCED)-SUBGRAPH	ХР	<i>H</i> ∉ <i>B</i> 2-cc
/Odd-Minor/Scattered-Packing		$n^{\mathcal{O}(k)}$

- $\mathcal{B} = \text{bipartite}, P_3 \subseteq H = P_3 \text{ is a subgraph of } H, 2\text{-cc} = 2\text{-connected}$
- k = bipartite treewidth

H-Subgraph/Odd-Minor-Packing FPT when H is 2-connected non-bipartite?

H-Subgraph/Odd-Minor-Packing FPT when H is 2-connected non-bipartite? XP when H is not bipartite and not 2-connected? First open case: H = paw.

- H-Subgraph/Odd-Minor-Packing FPT when H is 2-connected non-bipartite? XP when H is not bipartite and not 2-connected? First open case: H = paw.
- H-Subgraph-Cover when H is not bipartite and is not a clique? First open cases: H = C₅, or H = paw.

- H-Subgraph/Odd-Minor-Packing FPT when H is 2-connected non-bipartite? XP when H is not bipartite and not 2-connected? First open case: H = paw.
- H-Subgraph-Cover when H is not bipartite and is not a clique? First open cases: H = C₅, or H = paw.
- Can we use bipartite treewidth to deal with problems related to odd-minors? Currently working on it.

- H-Subgraph/Odd-Minor-Packing FPT when H is 2-connected non-bipartite? XP when H is not bipartite and not 2-connected? First open case: H = paw.
- H-Subgraph-Cover when H is not bipartite and is not a clique? First open cases: H = C₅, or H = paw.
- Can we use bipartite treewidth to deal with problems related to odd-minors? Currently working on it.

Thank you!

