A note on interval colourings of graphs

Julien Portier
University of Cambridge

$$
\text { JGA } 2023
$$

Joint work with M. Axenovich, A. Girão, L. Hollom, E. Powierski, M. Savery, Y. Tamitegama and L. Versteegen

What is an interval colouring?

Definition

An interval colouring of a graph $G=(V, E)$ is a proper edge-colouring $c: E \rightarrow \mathbb{Z}$ such that, for any vertex $v \in V$, the set of colours of edges incident to v is an interval of \mathbb{Z}.

What is an interval colouring?

Definition

An interval colouring of a graph $G=(V, E)$ is a proper edge-colouring $c: E \rightarrow \mathbb{Z}$ such that, for any vertex $v \in V$, the set of colours of edges incident to v is an interval of \mathbb{Z}.

Figure: Example of interval colouring

Why are interval colourings important?

- Interval colourings are scheduling problems where nobody has to wait between meetings

Why are interval colourings important?

- Interval colourings are scheduling problems where nobody has to wait between meetings
- Vertices are people, edges are meetings, and colours are times of meetings

Figure: Example interval colouring of a graph

Why are interval colourings important?

- Interval colourings are scheduling problems where nobody has to wait between meetings
- Vertices are people, edges are meetings, and colours are times of meetings
- Bipartite graphs receive special attention; the 'parent-teacher conference' analogy often used

Figure: Example interval colouring of a graph

Interval thickness

What if a graph cannot be interval coloured? Can we edge partition it into graphs that can be interval coloured?

Interval thickness

What if a graph cannot be interval coloured? Can we edge partition it into graphs that can be interval coloured?

Definition

The interval thickness of a graph $G=(V, E)$, written $\theta(G)$, is the minimum k such that G can be edge-partitioned into k parts, each of which can be interval coloured.
We also define $\theta_{\text {max }}(n):=\max \{\theta(G):|V(G)|=n\}$ and
$\theta_{\max }^{\prime}(m):=\max \{\theta(G):|E(G)|=m\}$

Interval thickness

What if a graph cannot be interval coloured? Can we edge partition it into graphs that can be interval coloured?

Definition

The interval thickness of a graph $G=(V, E)$, written $\theta(G)$, is the minimum k such that G can be edge-partitioned into k parts, each of which can be interval coloured.
We also define $\theta_{\text {max }}(n):=\max \{\theta(G):|V(G)|=n\}$ and
$\theta_{\max }^{\prime}(m):=\max \{\theta(G):|E(G)|=m\}$
Question: What values does $\theta_{\max }(n)$ take?

Interval thickness example

$$
\theta\left(K_{5}\right)=2
$$

Interval thickness example

$$
\theta\left(K_{5}\right)=2
$$

Previous bounds for $\theta_{\max }(n)$

- Asratian, Casselgren, and Petrosyan ${ }^{1}$ proved $\theta_{\max }(n) \leq 2\lceil n / 5\rceil$

[^0]
Previous bounds for $\theta_{\max }(n)$

- Asratian, Casselgren, and Petrosyan ${ }^{1}$ proved $\theta_{\max }(n) \leq 2\lceil n / 5\rceil$
- Axenovich and Zheng ${ }^{2}$ proved $\theta_{\text {max }}(n)=o(n)$

[^1]
Previous bounds for $\theta_{\max }(n)$

- Asratian, Casselgren, and Petrosyan ${ }^{1}$ proved $\theta_{\max }(n) \leq 2\lceil n / 5\rceil$
- Axenovich and Zheng ${ }^{2}$ proved $\theta_{\text {max }}(n)=o(n)$

The lower bound is less well studied. Asratian, Casselgren, and Petrosyan ${ }^{1}$ also asked if for every $k \in \mathbb{Z}$ there is some graph G such that $\theta(G)=k$. Until now, no graph G was known with $\theta(G) \geq 3$.

[^2]
Our results

We prove the following result.

Theorem

There is a universal constant c such that for every n,

$$
c \frac{\log n}{\log \log n} \leq \theta_{\max }(n) \leq n^{5 / 6+o(1)}
$$

Overview of the upper bound

Theorem

$$
\begin{aligned}
& \theta_{\max }(n) \leq n^{5 / 6+o(1)} \\
& \theta_{\max }^{\prime}(m) \leq m^{5 / 11+o(1)}
\end{aligned}
$$

Observation

Forests and bipartite regular graphs are interval-colourable.
Idea: a graph is either dense enough to contain a large bipartite regular graph, or sparse enough that a spanning tree contains *most* of its edges.

Overview of the upper bound

We use the 2 following results. ${ }^{34}$

Theorem (Rödl, Wysocka)

Let $\gamma: \mathbb{N} \rightarrow[0,1 / 2)$ satisfy $\gamma(n)=\omega\left(n^{-1 / 3}\right)$ as $n \rightarrow \infty$. Then every n-vertex graph with at least γn^{2} edges contains an $\Omega\left(\gamma^{3} n\right)$-regular subgraph.

Theorem (Dean, Hutchinson, Scheinerman)

The arboricity of any graph on m edges is at most $\sqrt{\frac{m}{2}}$.

[^3]
Overview of the lower bound

We will make use of the following observation by Sevastianov.

Observation

Let G be an interval colourable graph and let $U \subseteq V(G)$. Suppose that there exists $d \in \mathbb{N}$ such that for all distinct $v, w \in U$ there is a path P in G from v to w such that $\sum_{x \in V(P)} d(x) \leq d$. Then for all $u \in V(G)$, we have $|N(u) \cap U| \leq d$.

Overview of the lower bound

Lemma

Fix $\alpha \in(0,1 / 2]$ and let a and n be integers satisfying $n \geq \max \{1000(\log (a)+1) / \alpha, a+1\}$. Then there is a bipartite graph G on parts A and B of sizes a and n respectively satisfying the following.
(1) For all $x \in A, d(x)=\lfloor\alpha n\rfloor$.
(2) For each $\delta \in(0,1]$ with $\delta \geq 10 a^{-1 / 3} \alpha^{-1}$, if H is a subgraph of G with at least $\alpha \delta$ an edges, then there exist $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$ with $\left|A^{\prime}\right| \leq 1 / \alpha$ and $\left|B^{\prime}\right| \geq \delta n / 16$ such that the induced subgraph $H\left[A^{\prime} \cup B^{\prime}\right]$ has diameter at most 6 .

Overview of the lower bound on $\theta_{\max }(n)$

- $\left|A_{i}\right|=\sqrt{n},|B|=n$, $\alpha_{i}=2^{-i}$, and construct $G_{i}=G\left[A_{i} \cup B\right]$ according to previous lemma.

Overview of the lower bound on $\theta_{\max }(n)$

- $\left|A_{i}\right|=\sqrt{n},|B|=n$, $\alpha_{i}=2^{-i}$, and construct $G_{i}=G\left[A_{i} \cup B\right]$ according to previous lemma.
- Do this for each $1 \leq i \leq \log n / 7$.

Figure: Construction of G

Overview of the lower bound on $\theta_{\max }(n)$

- $\left|A_{i}\right|=\sqrt{n},|B|=n$,
$\alpha_{i}=2^{-i}$, and construct $G_{i}=G\left[A_{i} \cup B\right]$ according to previous lemma.
- Do this for each
$1 \leq i \leq \log n / 7$.
- There exists interval-colourable subgraph H of G which is quite dense in some G_{i}

Figure: Construction of G

Overview of the lower bound on $\theta_{\max }(n)$

- $\left|A_{i}\right|=\sqrt{n},|B|=n$,
$\alpha_{i}=2^{-i}$, and construct $G_{i}=G\left[A_{i} \cup B\right]$ according to previous lemma.
- Do this for each $1 \leq i \leq \log n / 7$.
- There exists interval-colourable subgraph H of G which is quite dense in some G_{i}
- Get contradiction by previous lemma and observation.

Further research and open problems

There are many possible areas of further work here.

- Can $c \frac{\log n}{\log \log n} \leq \theta_{\max }(n) \leq n^{5 / 6+o(1)}$ be tightened? Which bound is closer to the truth?

Further research and open problems

There are many possible areas of further work here.

- Can $c \frac{\log n}{\log \log n} \leq \theta_{\text {max }}(n) \leq n^{5 / 6+o(1)}$ be tightened? Which bound is closer to the truth?
- When is the Erdős-Renyi random graph $G(n, p)$ interval colourable? What about the random bipartite graph?

Further research and open problems

There are many possible areas of further work here.

- Can $c \frac{\log n}{\log \log n} \leq \theta_{\text {max }}(n) \leq n^{5 / 6+o(1)}$ be tightened? Which bound is closer to the truth?
- When is the Erdős-Renyi random graph $G(n, p)$ interval colourable? What about the random bipartite graph?
- For which a, b is it the case that all (a, b)-biregular graphs (i.e. $V=A \cup B$, degree of $x \in A$ is a, degree of $y \in B$ is b) are interval colourable?

[^0]: ${ }^{1}$ Armen S Asratian, Carl Johan Casselgren, and Petros A Petrosyan.
 "Decomposing graphs into interval colorable subgraphs and no-wait multi-stage schedules". In: Discrete Applied Mathematics (2022).
 ${ }^{2}$ Maria Axenovich and Michael Zheng. "Interval colorings of graphs-Coordinated and unstable no-wait schedules". In: Journal of Graph Theory 104.4 (2023), pp. 757-768.

[^1]: ${ }^{1}$ Armen S Asratian, Carl Johan Casselgren, and Petros A Petrosyan.
 "Decomposing graphs into interval colorable subgraphs and no-wait multi-stage schedules". In: Discrete Applied Mathematics (2022).
 ${ }^{2}$ Maria Axenovich and Michael Zheng. "Interval colorings of graphs-Coordinated and unstable no-wait schedules". In: Journal of Graph Theory 104.4 (2023), pp. 757-768.

[^2]: ${ }^{1}$ Armen S Asratian, Carl Johan Casselgren, and Petros A Petrosyan.
 "Decomposing graphs into interval colorable subgraphs and no-wait multi-stage schedules". In: Discrete Applied Mathematics (2022).
 ${ }^{2}$ Maria Axenovich and Michael Zheng. "Interval colorings of graphs-Coordinated and unstable no-wait schedules". In: Journal of Graph Theory 104.4 (2023), pp. 757-768.

[^3]: ${ }^{3}$ Vojtech Rödl and Beata Wysocka. "Note on regular subgraphs". In: Journal of Graph Theory 24.2 (1997), pp. 139-154.
 ${ }^{4}$ Alice M Dean, Joan P Hutchinson, and Edward R Scheinerman. "On the thickness and arboricity of a graph". In: Journal of Combinatorial Theory, Series B 52.1 (1991), pp. 147-151.

