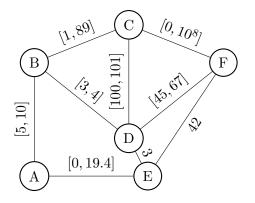
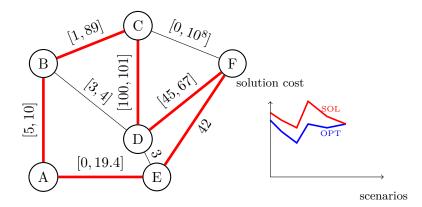
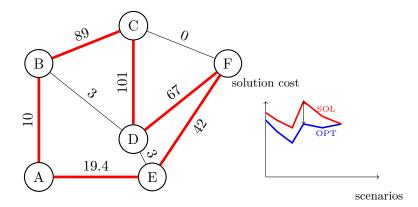
ROBUST ALGORITHMICS FOR NP-HARD PROBLEMS ON WEIGHTED GRAPHS

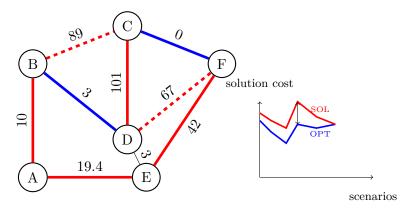
Tobias Mömke (Augsburg Universität), Ralf Klasing (LaBRI, Bordeaux), Émile Naquin (LaBRI, Bordeaux)

JGA 2023









Regret: SOL - OPT = 89 + 67 - (3 + 0) = 153.

Robust approximation

We follow [GMP23].

- ▶ Minimizing regret is NP-hard.
- ▶ *MR*: minimal regret.
- Impossible to guarantee $\forall d, regret(d) \leq \beta MR!$

r

► (α, β) -robust approximation: $\forall d, regret(d) \leq \alpha \operatorname{opt}_d + \beta MR$.

min

s.t. $Ax \ge b$ (problem constraints) $\forall d \in [\ell, u] \quad d^{\top}x \le \text{opt}_d + r$ (regret constraints) $x \ge 0$

Robust LP

Robust approximation

We follow [GMP23].

- ▶ Minimizing regret is NP-hard.
- \blacktriangleright MR: minimal regret.
- Impossible to guarantee $\forall d, regret(d) \leq \beta MR!$

r

► (α, β) -robust approximation: $\forall d, regret(d) \leq \alpha \operatorname{opt}_d + \beta MR$.

min

s.t. $Ax \ge b$ (problem constraints) $\forall d \in [\ell, u] \quad d^{\top}x \le \operatorname{opt}_d + r$ (regret constraints) $x \ge 0$

Robust LP

For polynomial problems

Theorem ([Kas08])

Any polynomial-time edge selection problem admits a (0,2)-robust approximation algorithm:

 $\forall d, regret(d) \leq 2MR.$

Take the optimal solution for $\frac{\ell+u}{2}$.

The central theorem

Theorem ([GMP23])

If an edge-selection problem:

- has integrality gap δ ;
- has approximation ratio γ ;
- admits a (α, β)-approximate separation oracle for the robust LP;

then it has a $(\alpha \delta \gamma, \beta \delta \gamma + \gamma)$ -approximate robust algorithm.

The central theorem

Theorem ([GMP23])

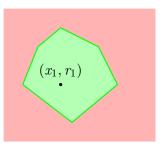
If an edge-selection problem:

- has integrality gap δ ;
- has approximation ratio γ ;
- admits a (α, β)-approximate separation oracle for the robust LP;

then it has a $(\alpha \delta \gamma, \beta \delta \gamma + \gamma)$ -approximate robust algorithm.

Approximate separation oracles

 $\begin{array}{ll} \min & r \\ \text{s.t.} & Ax \geq b \\ & \forall d \in [\ell, u] \quad d^\top x \leq \operatorname{opt}_d + r \\ & x \geq 0 \end{array}$



Definition (Approximate Separation Oracle)

A (α, β) -approximate separation oracle for the robust LP takes (x, r) and either

- 1. Guarantees that (x, r) is such that x is a fractional solution of the problem, and $\forall d, d^{\top}x \leq \alpha \text{opt}_d + \beta r$, or
- 2. Returns a d such that $d^{\top}x > \operatorname{opt}_d + r$.

Approximate separation oracles

$$\begin{array}{ccc} \min & r \\ \text{s.t.} & Ax \ge b \\ & \forall d \in [\ell, u] & d^{\top}x \le \operatorname{opt}_d + r \\ & x \ge 0 \end{array}$$

Definition (Approximate Separation Oracle)

A (α, β) -approximate separation oracle for the robust LP takes (x, r) and either

1. Guarantees that (x, r) is such that x is a fractional solution of the problem, and $\forall d, d^{\top}x \leq \alpha \text{opt}_d + \beta r$, or

 (x_1, r_1)

 (x_3, r_3)

2. Returns a d such that $d^{\top}x > \operatorname{opt}_d + r$.

[GMP23]'s results

Definition (Steiner tree) Given $S \subseteq V$, find a tree covering S of minimal weight.

- \blacktriangleright (4.5, 3.75) for TSP (easy)
- ▶ (2.78, 12.51) for Steiner Tree when $\ell = 0$ (somewhat easy)
- ▶ (2755,64) for Steiner Tree (difficult)

[GMP23]'s results

Definition (Steiner tree) Given $S \subseteq V$, find a tree covering S of minimal weight.

\blacktriangleright (4.5, 3.75) for TSP (easy)

- (2.78, 12.51) for Steiner Tree when $\ell = 0$ (somewhat easy)
- ▶ (2755,64) for Steiner Tree (difficult)

The DOSS approach

Definition (DOSS)

We say that a problem \mathcal{P} admits a α -dense optimizable solution set (DOSS) if there exists a polynomial-time algorithm that given instance $(G, [\ell, u])$, builds \mathcal{S} and a polynomial-time function f such that:

- 1. For all $d \in [\ell, u]$, S contains an α -approximation to \mathcal{P} on cost function d.
- 2. For all $d \in [\ell, u], f(d) = \arg \min_{S \in \mathcal{S}} d(S)$.

Having an α -DOSS implies having a $(\alpha, 1)$ -approximate separation oracle.

The DOSS approach for TSP

For TSP, a 2-DOSS is easy: $S = \{2T | T \text{ a spanning tree}\}.$

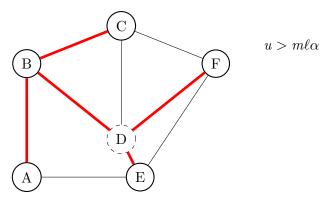
Can we find DOSSs for other problems?

"Most" problems do not have a DOSS :(

In TSP, one solution using a subset of the edges of another solution does not imply equality. In Steiner tree, it does.

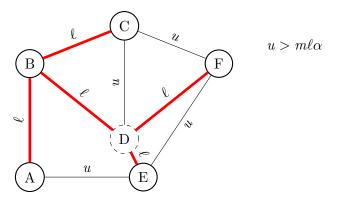
"Most" problems do not have a DOSS :(

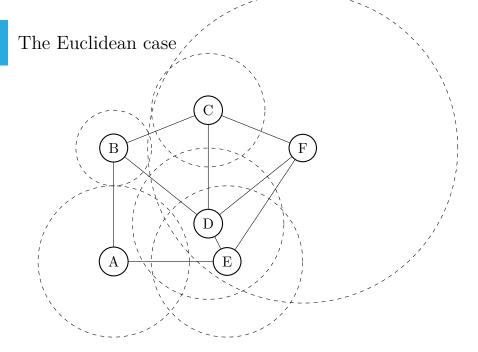
We show that in any tentative α -DOSS S for Steiner Tree, every Steiner tree is in S. Thus the minimization operation is NP-hard.



"Most" problems do not have a DOSS :(

We show that in any tentative α -DOSS S for Steiner Tree, every Steiner tree is in S. Thus the minimization operation is NP-hard.





Conclusion

- ▶ Many interesting open questions!
- General framework for robustifying an approximation algorithm?
- Non-robust approximable problems with standard approximation?
- ▶ Euclidean cases, scheduling

Questions?

emile.naquin@u-bordeaux.fr

- [GMP23] Ganesh, Arun, Bruce M. Maggs, and Debmalya Panigrahi. "Robust Algorithms for TSP and Steiner Tree." ACM Transactions on Algorithms 19, no. 2 (April 30, 2023): 1–37. https://doi.org/10.1145/3570957.
- 2. [Kas08] Kasperski, Adam. Discrete Optimization with Interval Data: Minmax Regret and Fuzzy Approach. Studies in Fuzziness and Soft Computing 228. Berlin: Springer, 2008.