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Robust Travelling Salesman 2
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Regret: SOL − OPT = 89 + 67 − (3 + 0) = 153.
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Robust approximation 3

We follow [GMP23].
I Minimizing regret is NP-hard.
I MR: minimal regret.
I Impossible to guarantee ∀d, regret(d) ≤ βMR!
I (α, β)-robust approximation: ∀d, regret(d) ≤ αoptd +βMR.

min r

s.t. Ax ≥ b (problem constraints)

∀d ∈ [`, u] d>x ≤ optd + r (regret constraints)

x ≥ 0

Robust LP
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For polynomial problems 4

Theorem ([Kas08])
Any polynomial-time edge selection problem admits a
(0, 2)-robust approximation algorithm:

∀d, regret(d) ≤ 2MR.

Take the optimal solution for `+u
2 .
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The central theorem 5

Theorem ([GMP23])
If an edge-selection problem:
I has integrality gap δ;
I has approximation ratio γ;
I admits a (α, β)-approximate separation oracle for the

robust LP;
then it has a (αδγ, βδγ + γ)-approximate robust algorithm.
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Approximate separation oracles 6

min r

s.t. Ax ≥ b

∀d ∈ [`, u] d>x ≤ optd + r

x ≥ 0

(x1, r1)

Definition (Approximate Separation Oracle)
A (α, β)-approximate separation oracle for the robust LP takes
(x, r) and either

1. Guarantees that (x, r) is such that x is a fractional solution
of the problem, and ∀d, d>x ≤ αoptd + βr , or

2. Returns a d such that d>x > optd + r .
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[GMP23]’s results 7

Definition (Steiner tree)
Given S ⊆ V , find a tree covering S of minimal weight.

I (4.5, 3.75) for TSP (easy)
I (2.78, 12.51) for Steiner Tree when ` = 0 (somewhat easy)
I (2755, 64) for Steiner Tree (difficult)
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The DOSS approach 8

Definition (DOSS)
We say that a problem P admits a α-dense optimizable solution
set (DOSS) if there exists a polynomial-time algorithm that
given instance (G, [`, u]), builds S and a polynomial-time
function f such that:

1. For all d ∈ [`, u], S contains an α-approximation to P on
cost function d.

2. For all d ∈ [`, u], f (d) = argminS∈S d(S).

Having an α-DOSS implies having a (α, 1)-approximate
separation oracle.
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The DOSS approach for TSP 9

For TSP, a 2-DOSS is easy: S = {2T |T a spanning tree}.

Can we find DOSSs for other problems?
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”Most” problems do not have a DOSS :( 10

In TSP, one solution using a subset of the edges of another
solution does not imply equality. In Steiner tree, it does.
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”Most” problems do not have a DOSS :( 10

We show that in any tentative α-DOSS S for Steiner Tree,
every Steiner tree is in S. Thus the minimization operation is
NP-hard.
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The Euclidean case 11
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Conclusion 12

I Many interesting open questions!
I General framework for robustifying an approximation

algorithm?
I Non-robust approximable problems with standard

approximation?
I Euclidean cases, scheduling
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Questions?
emile.naquin@u-bordeaux.fr
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