Random embedding of bounded degree trees with optimal spread

Clément Legrand-Duchesne

LaBRI, Bordeaux

November 22, 2023

Joint work with Alp Müyesser, Paul Bastide

Hiking workshop

Clément Legrand

When does $H \subset G$?

• NP-complete (ex: Hamilton cycle)

When does $H \subset G$?

- NP-complete (ex: Hamilton cycle)
- What about sufficient conditions ?

Dirac 1952

If $\delta(G) \ge n/2$ then G is hamiltonian

When does $H \subset G$?

- NP-complete (ex: Hamilton cycle)
- What about sufficient conditions ?

Dirac 1952

If $\delta(G) \ge n/2$ then G is hamiltonian

Dirac threshold of H

What is the infimum $\delta_{H,n}$ such that $\delta(G) \geq \delta_{H,n} \Rightarrow H \subset G$?

Injection $\phi: H \to G$ such that $uv \in E(H) \Rightarrow \phi(u)\phi(v) \in E(G)$

Injection $\phi: H \to G$ such that $uv \in E(H) \Rightarrow \phi(u)\phi(v) \in E(G)$

Counting the embeddings

If $\delta(G) \geq \delta_{H,n}$, how many embeddings of H in G?

Injection $\phi: H \to G$ such that $uv \in E(H) \Rightarrow \phi(u)\phi(v) \in E(G)$

Counting the embeddings If $\delta(G) \ge \delta_{H,n}$, how many embeddings of H in G?

Embedding in a random graph

For what p_n does $\mathbb{P}[H \subset G(n, p_n)] \geq \frac{1}{2}$?

Injection $\phi: H \to G$ such that $uv \in E(H) \Rightarrow \phi(u)\phi(v) \in E(G)$

Counting the embeddings If $\delta(G) \ge \delta_{H,n}$, how many embeddings of H in G?

Embedding in a random graph

For what p_n does $\mathbb{P}[H \subset G(n, p_n)] \geq \frac{1}{2}$?

Robustness: Embedding in a typical subgraph G * p: Keep each edge of G with probability p For what p'_n does $\mathbb{P}[H \subset G * p'_n] \ge \frac{1}{2}$ for all G with $\delta(G) \ge \delta_{H,n}$?

q-spread embedding

A distribution \mathbb{P} over embedding $\phi : H \to G$ is *q*-spread if $\forall x_1, \ldots x_s \in V(H)$, $\forall y_1, \ldots y_s \in V(G)$,

 $\mathbb{P}[\forall i, \phi(x_i) = y_i] \leq q^s$

q-spread embedding

A distribution \mathbb{P} over embedding $\phi : H \to G$ is *q*-spread if $\forall x_1, \ldots x_s \in V(H)$, $\forall y_1, \ldots y_s \in V(G)$,

$$\mathbb{P}[\forall i, \phi(x_i) = y_i] \leq q^s$$

Typically, $q = \frac{C}{n}$

q-spread embedding

A distribution \mathbb{P} over embedding $\phi : H \to G$ is *q*-spread if $\forall x_1, \ldots x_s \in V(H)$, $\forall y_1, \ldots y_s \in V(G)$,

 $\mathbb{P}[\forall i, \phi(x_i) = y_i] \leq q^s$

Typically, $q = \frac{C}{n}$

Other point of view

Randomized algorithm embedding H progressively, with linearly many options at each step

Spreadness implies counting

If there is a *q*-spread distribution, then for all embedding ϕ_{H} ,

$$\mathbb{P}[\phi = \phi_H] \le q^{|H|}$$

Hence, # embedding $\geq q^{-|H|}$

Spreadness implies counting

If there is a q-spread distribution, then for all embedding ϕ_{H} ,

$$\mathbb{P}[\phi = \phi_H] \le q^{|H|}$$

Hence, # embedding $\geq q^{-|H|}$

Corollary

If there is a $\left(\frac{C}{n}\right)$ -spread distribution, then G contains at least $\left(\frac{n}{C}\right)^n \ge n!/C^n$ copies of H

If there is a q-spread distribution, then for all embedding ϕ_{H} ,

$$\mathbb{P}[\phi = \phi_H] \le q^{|H|}$$

Hence, # embedding $\geq q^{-|H|}$

Corollary

If there is a $\left(\frac{C}{n}\right)$ -spread distribution, then G contains at least $\left(\frac{n}{C}\right)^n \ge n!/C^n$ copies of H

Park, Pham 2022

Proved Kahn-Kalai conjecture Corollary: spreadness implies robustness and random threshold

Komlos, Sarkozy, Szemeredi 1996

 $\forall \Delta, \forall \alpha > 0$, for *n* large enough, $\delta(G) \ge (\frac{1}{2} + \alpha)n \Rightarrow G$ contains all *n*-vertex trees of maximum degree Δ

Komlos, Sarkozy, Szemeredi 1996

 $\forall \Delta, \forall \alpha > 0$, for *n* large enough, $\delta(G) \ge (\frac{1}{2} + \alpha)n \Rightarrow G$ contains all *n*-vertex trees of maximum degree Δ

Pham, Sah, Sawhnhey, Simkin 23

 $O(\frac{1}{n})$ -spread distribution for perfect matchings, K_r -factor and spanning trees of bounded degree

Komlos, Sarkozy, Szemeredi 1996

 $\forall \Delta, \forall \alpha > 0$, for *n* large enough, $\delta(G) \ge (\frac{1}{2} + \alpha)n \Rightarrow G$ contains all *n*-vertex trees of maximum degree Δ

Pham, Sah, Sawhnhey, Simkin 23

 $O(\frac{1}{n})$ -spread distribution for perfect matchings, K_r -factor and spanning trees of bounded degree

Bastide, L.-D., Müyesser 23+

 $O(\frac{1}{n})$ -spread distribution for spanning trees of bounded degree

- Avoids the Regularity Lemma
- Shorter and more flexible proof
- Better constants
- Generalizes painlessly to hypergraphs and digraphs

To reduce to nicer settings:

- Subdivide T in subtrees of controlled size
- Partition G randomly

To reduce to nicer settings:

- Subdivide T in subtrees of controlled size
- Partition G randomly

Intermediate steps

Embed T of max degree Δ in G with:

Final goal |T| = |G| = n and $\delta(G) \ge (\frac{1}{2} + \alpha)n$

To reduce to nicer settings:

- Subdivide T in subtrees of controlled size
- Partition *G* randomly

Intermediate steps

Embed T of max degree Δ in G with:

Smaller trees
$$|T| = (1 - \varepsilon)|G|$$
 and $\delta(G) \ge (\frac{1}{2} + \alpha)n$
Final goal $|T| = |G| = n$ and $\delta(G) \ge (\frac{1}{2} + \alpha)n$

To reduce to nicer settings:

- Subdivide T in subtrees of controlled size
- Partition G randomly

Intermediate steps

Embed T of max degree Δ in G with: Boosted degree $|T| = (1 - \varepsilon)|G|$ and $\delta(G) \ge (1 - \rho)n$ Smaller trees $|T| = (1 - \varepsilon)|G|$ and $\delta(G) \ge (\frac{1}{2} + \alpha)n$ Final goal |T| = |G| = n and $\delta(G) \ge (\frac{1}{2} + \alpha)n$

Final Goal

|T| = n and $\delta(G) = (\frac{1}{2} + \alpha)n$

Assuming you know how to embed T in G with $|T| = (1 - \varepsilon)n$ and $\delta(G) \ge (\frac{1}{2} + \alpha)n$

 $|T_i| \approx \text{constant fraction of } |T \setminus (\bigcup_{i < i} T_i)|$

Final Goal

|T| = n and $\delta(G) = (\frac{1}{2} + \alpha)n$

Assuming you know how to embed T in G with $|T| = (1 - \varepsilon)n$ and $\delta(G) \ge (\frac{1}{2} + \alpha)n$

 $|T_i| \approx \text{constant fraction of } |T \setminus (\bigcup_{i < i} T_i)|$

Final Goal

|T| = n and $\delta(G) = (\frac{1}{2} + \alpha)n$

Assuming you know how to embed T in G with $|T| = (1 - \varepsilon)n$ and $\delta(G) \ge (\frac{1}{2} + \alpha)n$

 $|T_i| \approx \text{constant fraction of } |T \setminus (\bigcup_{i < i} T_i)|$

Intermediate goal: Embed smaller trees

 $|T| = (1 - \varepsilon)n$ and $\delta(G) = (\frac{1}{2} + \alpha)n$

- Same color = roughly the same size
- Linearly many T_i 's in each color class

Intermediate goal: Embed smaller trees

 $|T| = (1 - \varepsilon)n$ and $\delta(G) = (\frac{1}{2} + \alpha)n$

- Same color = roughly the same size
- Linearly many T_i 's in each color class

Intermediate goal: Embed smaller trees

 $|T| = (1 - \varepsilon)n$ and $\delta(G) = (\frac{1}{2} + \alpha)n$

- Same color = roughly the same size
- Linearly many T_i 's in each color class
- Almost all V_i are $\alpha/2$ -Dirac
- Almost all (*V_i*, *V_j*) share good minimum degree

First step: Boosted minimal degree of G

 $|\mathcal{T}| = (1 - \varepsilon)n$ and $\delta(\mathcal{G}) = (1 - \rho)n$ and respect the coloring

• For every color c, $|T \cap c| \leq (1 - \eta)|V \cap c|$

 $|\mathcal{T}| = (1 - \varepsilon)n$ and $\delta(\mathcal{G}) = (1 - \rho)n$ and respect the coloring

- For every color c, $|T \cap c| \leq (1 \eta)|V \cap c|$
- Fix some BFS ordering of V(T)
- Following the ordering, embed each node x in its color class, among the free vertices of $N(\phi(p))$

-	· · ·	
(I	ement	egrand
-		Logiana

- Spread distribution for spanning grids when δ(G) ≥ (¹/₂ + α)n Subdivision arguments do not work as nicely
- Extend our result to graphs of bandwidth o(n) when $\delta(G) \ge (\frac{1}{2} + \alpha)n$ Probabilistic analysis more complex

- Spread distribution for spanning grids when δ(G) ≥ (¹/₂ + α)n Subdivision arguments do not work as nicely
- Extend our result to graphs of bandwidth o(n) when $\delta(G) \ge (\frac{1}{2} + \alpha)n$ Probabilistic analysis more complex

Thanks!