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Extremal graph theory

When does H C G?

e NP-complete (ex: Hamilton cycle)
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Extremal graph theory

When does H C G?

e NP-complete (ex: Hamilton cycle)

e \What about sufficient conditions 7

Dirac 1952
If 6(G) > n/2 then G is hamiltonian

Dirac threshold of H
What is the infimum &y , such that §(G) > 6y, = HC G ?
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Other questions

Embedding
Injection ¢ : H — G such that uv € E(H) = ¢(u)¢(v) € E(G)
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Other questions

Embedding
Injection ¢ : H — G such that uv € E(H) = ¢(u)¢(v) € E(G)

Counting the embeddings
If 6(G) > 0H,n, how many embeddings of H in G7

Embedding in a random graph
For what p, does P[H C G(n, p,)] > 37

Robustness: Embedding in a typical subgraph

G + p: Keep each edge of G with probability p
For what p), does P[H C G * p,] > 3 for all G with §(G) > 64,7
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Unified approach

g-spread embedding

A distribution P over embedding ¢ : H — G is g-spread if Vxq,...xs € V(H),
Vyi1,...ys € V(G),

PVi,o(xi) = yil < ¢°
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Unified approach

g-spread embedding

A distribution P over embedding ¢ : H — G is g-spread if Vxq,...xs € V(H),
Vy1,...ys € V(G),
PVi,o(xi) = yil < ¢°

Typically, g = %

Other point of view

Randomized algorithm embedding H progressively, with linearly many options at each step
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Spreadness implies counting

If there is a g-spread distribution, then for all embedding ¢4,

Plg = ¢n] < ¢

Hence, # embedding > ¢~ IH
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Spreadness implies counting

If there is a g-spread distribution, then for all embedding ¢4,
Plg = ¢n] < ¢

Hence, # embedding > ¢~ IH

Corollary

If there is a (%)—spread distribution, then G contains at least (%)n > n!/C" copies of H

Park, Pham 2022

Proved Kahn-Kalai conjecture
Corollary: spreadness implies robustness and random threshold
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Embedding spanning trees of bounded degree

Komlos, Sarkozy, Szemeredi 1996

VA,Va > 0, for n large enough, 5(G) > (3 + a)n = G contains all n-vertex trees of maximum
degree A
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Embedding spanning trees of bounded degree

Komlos, Sarkozy, Szemeredi 1996

VA,Va > 0, for n large enough, 5(G) > (3 + a)n = G contains all n-vertex trees of maximum
degree A

Pham, Sah, Sawhnhey, Simkin 23

O(%)—spread distribution for perfect matchings, K,-factor and spanning trees of bounded degree

Bastide, L.-D., Miiyesser 23+

O(%)—spread distribution for spanning trees of bounded degree

® Avoids the Regularity Lemma e Better constants

® Shorter and more flexible proof ® Generalizes painlessly to hypergraphs and digraphs
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Spread distribution on trees of bounded degree

Sketch of proof
To reduce to nicer settings:
® Subdivide T in subtrees of controlled size

® Partition G randomly
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Spread distribution on trees of bounded degree

Sketch of proof
To reduce to nicer settings:

e Subdivide T in subtrees of controlled size
® Partition G randomly

Intermediate steps
Embed T of max degree A in G with:

Smaller trees |T| = (1 —¢€)|G| and §(G) > (% +a)n
Final goal |T|=|G|=nand §(G) > (3 +a)n
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Spread distribution on trees of bounded degree

Sketch of proof

To reduce to nicer settings:
® Subdivide T in subtrees of controlled size
® Partition G randomly

Intermediate steps

Embed T of max degree A in G with:

Boosted degree |T|=(1—¢)|G|and 6(G) > (1
Smaller trees |T| = (1 —¢)|G| and 6(G) > (3 + a)n

Clément Legrand Spread distribution on trees of bounded degree 8 /12



Final Goal

|T|=nand 6(G) = (3 +a)n
Assuming you know how to embed T in G with | 7| = (1 — =)nand 6(G) > (5 +a)n

G
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| Ti| = constant fraction of | T\ (U;;

Ti)|
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Intermediate goal: Embed smaller trees

IT|=(1—¢)nand §(G) = (3 +a)n

7;
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IT|=(1—¢)nand §(G) = (3 +a)n

® Same color = roughly the same size
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Intermediate goal: Embed smaller trees

IT|=(1—¢)nand §(G) = (3 +a)n

® Same color = roughly the same size
e Linearly many T;'s in each color class
Almost all V; are a/2-Dirac

Almost all (V;, V;) share good minimum
degree

(# VL= (o) 4

o

) = (€)1
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First step: Boosted minimal degree of G

|T| =(1—¢)nand 6(G) = (1 — p)n and respect the coloring
® For every color ¢, |TNc| < (1—7n)|VNc

o IN(é(p)) Nl = (1- P)|V(G) N e
with p < g
¢ linearly many choices for ¢(x)

\
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First step: Boosted minimal degree of G

|T| =(1—¢)nand 6(G) = (1 — p)n and respect the coloring
® For every color ¢, |TNc| < (1—7n)|VNc
* Fix some BFS ordering of V/(T)

® Following the ordering, embed each node x in its color class, among the free vertices of

N(o(p))

o IN(é(p)) Nl = (1- P)|V(G) N e
with p < g
¢ linearly many choices for ¢(x)

\ =

already used
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* Spread distribution for spanning grids when §(G) > (3 + a)n
Subdivision arguments do not work as nicely

e Extend our result to graphs of bandwidth o(n) when 6(G) > (% +a)n
Probabilistic analysis more complex
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* Spread distribution for spanning grids when §(G) > (3 + a)n
Subdivision arguments do not work as nicely

e Extend our result to graphs of bandwidth o(n) when 6(G) > (% +a)n
Probabilistic analysis more complex

Thanks!
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