Random embedding of bounded degree trees with optimal spread

Clément Legrand-Duchesne

LaBRI, Bordeaux
November 22, 2023

Joint work with Alp Müyesser, Paul Bastide

Hiking workshop

Clément Legrand

Extremal graph theory

When does $H \subset G$?

- NP-complete (ex: Hamilton cycle)

Extremal graph theory

When does $H \subset G$?

- NP-complete (ex: Hamilton cycle)
- What about sufficient conditions ?

Dirac 1952
If $\delta(G) \geq n / 2$ then G is hamiltonian

Extremal graph theory

When does $H \subset G$?

- NP-complete (ex: Hamilton cycle)
- What about sufficient conditions ?

Dirac 1952

If $\delta(G) \geq n / 2$ then G is hamiltonian

Dirac threshold of H

What is the infimum $\delta_{H, n}$ such that $\delta(G) \geq \delta_{H, n} \Rightarrow H \subset G$?

Other questions

> Embedding
> Injection $\phi: H \rightarrow G$ such that $u v \in E(H) \Rightarrow \phi(u) \phi(v) \in E(G)$

Other questions

Embedding

Injection $\phi: H \rightarrow G$ such that $u v \in E(H) \Rightarrow \phi(u) \phi(v) \in E(G)$
Counting the embeddings
If $\delta(G) \geq \delta_{H, n}$, how many embeddings of H in G ?

Other questions

Embedding

Injection $\phi: H \rightarrow G$ such that $u v \in E(H) \Rightarrow \phi(u) \phi(v) \in E(G)$
Counting the embeddings
If $\delta(G) \geq \delta_{H, n}$, how many embeddings of H in G ?
Embedding in a random graph
For what p_{n} does $\mathbb{P}\left[H \subset G\left(n, p_{n}\right)\right] \geq \frac{1}{2}$?

Other questions

Embedding

Injection $\phi: H \rightarrow G$ such that $u v \in E(H) \Rightarrow \phi(u) \phi(v) \in E(G)$
Counting the embeddings
If $\delta(G) \geq \delta_{H, n}$, how many embeddings of H in G ?
Embedding in a random graph
For what p_{n} does $\mathbb{P}\left[H \subset G\left(n, p_{n}\right)\right] \geq \frac{1}{2}$?
Robustness: Embedding in a typical subgraph
$G * p$: Keep each edge of G with probability p
For what p_{n}^{\prime} does $\mathbb{P}\left[H \subset G * p_{n}^{\prime}\right] \geq \frac{1}{2}$ for all G with $\delta(G) \geq \delta_{H, n}$?

Unified approach

q-spread embedding

A distribution \mathbb{P} over embedding $\phi: H \rightarrow G$ is q-spread if $\forall x_{1}, \ldots x_{s} \in V(H)$, $\forall y_{1}, \ldots y_{s} \in V(G)$,

$$
\mathbb{P}\left[\forall i, \phi\left(x_{i}\right)=y_{i}\right] \leq q^{s}
$$

Unified approach

q-spread embedding

A distribution \mathbb{P} over embedding $\phi: H \rightarrow G$ is q-spread if $\forall x_{1}, \ldots x_{s} \in V(H)$, $\forall y_{1}, \ldots y_{s} \in V(G)$,

$$
\mathbb{P}\left[\forall i, \phi\left(x_{i}\right)=y_{i}\right] \leq q^{s}
$$

Typically, $q=\frac{c}{n}$

Unified approach

q-spread embedding

A distribution \mathbb{P} over embedding $\phi: H \rightarrow G$ is q-spread if $\forall x_{1}, \ldots x_{s} \in V(H)$,
$\forall y_{1}, \ldots y_{s} \in V(G)$,

$$
\mathbb{P}\left[\forall i, \phi\left(x_{i}\right)=y_{i}\right] \leq q^{s}
$$

Typically, $q=\frac{c}{n}$

Other point of view

Randomized algorithm embedding H progressively, with linearly many options at each step

Spreadness implies counting

If there is a q-spread distribution, then for all embedding ϕ_{H},

$$
\mathbb{P}\left[\phi=\phi_{H}\right] \leq q^{|H|}
$$

Hence, \# embedding $\geq q^{-|H|}$

Spreadness implies counting

If there is a q-spread distribution, then for all embedding ϕ_{H},

$$
\mathbb{P}\left[\phi=\phi_{H}\right] \leq q^{|H|}
$$

Hence, \# embedding $\geq q^{-|H|}$

Corollary

If there is a $\left(\frac{C}{n}\right)$-spread distribution, then G contains at least $\left(\frac{n}{C}\right)^{n} \geq n!/ C^{n}$ copies of H

Spreadness implies counting

If there is a q-spread distribution, then for all embedding ϕ_{H},

$$
\mathbb{P}\left[\phi=\phi_{H}\right] \leq q^{|H|}
$$

Hence, \# embedding $\geq q^{-|H|}$

Corollary

If there is a $\left(\frac{C}{n}\right)$-spread distribution, then G contains at least $\left(\frac{n}{C}\right)^{n} \geq n!/ C^{n}$ copies of H

Park, Pham 2022

Proved Kahn-Kalai conjecture
Corollary: spreadness implies robustness and random threshold

Embedding spanning trees of bounded degree

Komlos, Sarkozy, Szemeredi 1996

$\forall \Delta, \forall \alpha>0$, for n large enough, $\delta(G) \geq\left(\frac{1}{2}+\alpha\right) n \Rightarrow G$ contains all n-vertex trees of maximum degree Δ

Embedding spanning trees of bounded degree

Komlos, Sarkozy, Szemeredi 1996

$\forall \Delta, \forall \alpha>0$, for n large enough, $\delta(G) \geq\left(\frac{1}{2}+\alpha\right) n \Rightarrow G$ contains all n-vertex trees of maximum degree Δ

Pham, Sah, Sawhnhey, Simkin 23
$O\left(\frac{1}{n}\right)$-spread distribution for perfect matchings, K_{r}-factor and spanning trees of bounded degree

Embedding spanning trees of bounded degree

Komlos, Sarkozy, Szemeredi 1996

$\forall \Delta, \forall \alpha>0$, for n large enough, $\delta(G) \geq\left(\frac{1}{2}+\alpha\right) n \Rightarrow G$ contains all n-vertex trees of maximum degree Δ

Pham, Sah, Sawhnhey, Simkin 23
$O\left(\frac{1}{n}\right)$-spread distribution for perfect matchings, K_{r}-factor and spanning trees of bounded degree
Bastide, L.-D., Müyesser 23+
$O\left(\frac{1}{n}\right)$-spread distribution for spanning trees of bounded degree

- Avoids the Regularity Lemma
- Shorter and more flexible proof
- Better constants
- Generalizes painlessly to hypergraphs and digraphs

Spread distribution on trees of bounded degree

Sketch of proof

To reduce to nicer settings:

- Subdivide T in subtrees of controlled size
- Partition G randomly

Spread distribution on trees of bounded degree

Sketch of proof

To reduce to nicer settings:

- Subdivide T in subtrees of controlled size
- Partition G randomly

Intermediate steps
Embed T of max degree Δ in G with:

Final goal $|T|=|G|=n$ and $\delta(G) \geq\left(\frac{1}{2}+\alpha\right) n$

Spread distribution on trees of bounded degree

Sketch of proof

To reduce to nicer settings:

- Subdivide T in subtrees of controlled size
- Partition G randomly

Intermediate steps
Embed T of max degree Δ in G with:

Smaller trees $|T|=(1-\varepsilon)|G|$ and $\delta(G) \geq\left(\frac{1}{2}+\alpha\right) n$
Final goal $|T|=|G|=n$ and $\delta(G) \geq\left(\frac{1}{2}+\alpha\right) n$

Spread distribution on trees of bounded degree

Sketch of proof

To reduce to nicer settings:

- Subdivide T in subtrees of controlled size
- Partition G randomly

Intermediate steps

Embed T of max degree Δ in G with:
Boosted degree $|T|=(1-\varepsilon)|G|$ and $\delta(G) \geq(1-\rho) n$
Smaller trees $|T|=(1-\varepsilon)|G|$ and $\delta(G) \geq\left(\frac{1}{2}+\alpha\right) n$
Final goal $|T|=|G|=n$ and $\delta(G) \geq\left(\frac{1}{2}+\alpha\right) n$

Final Goal

$|T|=n$ and $\delta(G)=\left(\frac{1}{2}+\alpha\right) n$
Assuming you know how to embed T in G with $|T|=(1-\varepsilon) n$ and $\delta(G) \geq\left(\frac{1}{2}+\alpha\right) n$

$\left|T_{i}\right| \approx$ constant fraction of $\left|T \backslash\left(\bigcup_{j<i} T_{i}\right)\right|$

Final Goal

$|T|=n$ and $\delta(G)=\left(\frac{1}{2}+\alpha\right) n$
Assuming you know how to embed T in G with $|T|=(1-\varepsilon) n$ and $\delta(G) \geq\left(\frac{1}{2}+\alpha\right) n$

$\left|T_{i}\right| \approx$ constant fraction of $\left|T \backslash\left(\bigcup_{j<i} T_{i}\right)\right|$

Final Goal

$|T|=n$ and $\delta(G)=\left(\frac{1}{2}+\alpha\right) n$
Assuming you know how to embed T in G with $|T|=(1-\varepsilon) n$ and $\delta(G) \geq\left(\frac{1}{2}+\alpha\right) n$

$\left|T_{i}\right| \approx$ constant fraction of $\left|T \backslash\left(\bigcup_{j<i} T_{i}\right)\right|$

Intermediate goal: Embed smaller trees

$|T|=(1-\varepsilon) n$ and $\delta(G)=\left(\frac{1}{2}+\alpha\right) n$

- Same color $=$ roughly the same size
- Linearly many T_{i} 's in each color class

Intermediate goal: Embed smaller trees

$|T|=(1-\varepsilon) n$ and $\delta(G)=\left(\frac{1}{2}+\alpha\right) n$

- Same color $=$ roughly the same size
- Linearly many T_{i} 's in each color class

Intermediate goal: Embed smaller trees

$$
|T|=(1-\varepsilon) n \text { and } \delta(G)=\left(\frac{1}{2}+\alpha\right) n
$$

- Same color $=$ roughly the same size
- Linearly many T_{i} 's in each color class
- Almost all V_{i} are $\alpha / 2$-Dirac
- Almost all $\left(V_{i}, V_{j}\right)$ share good minimum degree

First step: Boosted minimal degree of G

$|T|=(1-\varepsilon) n$ and $\delta(G)=(1-\rho) n$ and respect the coloring

- For every color $c,|T \cap c| \leq(1-\eta)|V \cap c|$

$|N(\phi(p)) \cap c| \geq(1-\rho)|V(G) \cap c|$ with $\rho \ll \eta$
- linearly many choices for $\phi(x)$

First step: Boosted minimal degree of G

$|T|=(1-\varepsilon) n$ and $\delta(G)=(1-\rho) n$ and respect the coloring

- For every color $c,|T \cap c| \leq(1-\eta)|V \cap c|$
- Fix some BFS ordering of $V(T)$
- Following the ordering, embed each node x in its color class, among the free vertices of $N(\phi(p))$

$|N(\phi(p)) \cap c| \geq(1-\rho)|V(G) \cap c|$ with $\rho \ll \eta$
- linearly many choices for $\phi(x)$

Future work

- Spread distribution for spanning grids when $\delta(G) \geq\left(\frac{1}{2}+\alpha\right) n$ Subdivision arguments do not work as nicely
- Extend our result to graphs of bandwidth $o(n)$ when $\delta(G) \geq\left(\frac{1}{2}+\alpha\right) n$ Probabilistic analysis more complex

Future work

- Spread distribution for spanning grids when $\delta(G) \geq\left(\frac{1}{2}+\alpha\right) n$ Subdivision arguments do not work as nicely
- Extend our result to graphs of bandwidth $o(n)$ when $\delta(G) \geq\left(\frac{1}{2}+\alpha\right) n$ Probabilistic analysis more complex

Thanks!

