
Random embedding of bounded degree trees with optimal spread

Clément Legrand-Duchesne

LaBRI, Bordeaux

November 22, 2023

Joint work with Alp Müyesser, Paul Bastide

Clément Legrand 1 / 12



Hiking workshop

Clément Legrand 2 / 12



Extremal graph theory

When does H ⊂ G?
• NP-complete (ex: Hamilton cycle)

• What about sufficient conditions ?

Dirac 1952
If δ(G ) ≥ n/2 then G is hamiltonian

Dirac threshold of H
What is the infimum δH,n such that δ(G ) ≥ δH,n ⇒ H ⊂ G ?
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Other questions

Embedding
Injection φ : H → G such that uv ∈ E (H)⇒ φ(u)φ(v) ∈ E (G )

Counting the embeddings
If δ(G ) ≥ δH,n, how many embeddings of H in G?

Embedding in a random graph

For what pn does P[H ⊂ G (n, pn)] ≥ 1
2?

Robustness: Embedding in a typical subgraph
G ∗ p: Keep each edge of G with probability p
For what p′n does P[H ⊂ G ∗ p′n] ≥ 1

2 for all G with δ(G ) ≥ δH,n?
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Unified approach

q-spread embedding
A distribution P over embedding φ : H → G is q-spread if ∀x1, . . . xs ∈ V (H),
∀y1, . . . ys ∈ V (G ),

P[∀i , φ(xi ) = yi ] ≤ qs

Typically, q = C
n

Other point of view
Randomized algorithm embedding H progressively, with linearly many options at each step
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Spreadness implies counting

If there is a q-spread distribution, then for all embedding φH ,

P[φ = φH ] ≤ q|H|

Hence, # embedding ≥ q−|H|

Corollary

If there is a
(
C
n

)
-spread distribution, then G contains at least

(
n
C

)n ≥ n!/Cn copies of H

Park, Pham 2022
Proved Kahn-Kalai conjecture
Corollary: spreadness implies robustness and random threshold
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Embedding spanning trees of bounded degree

Komlos, Sarkozy, Szemeredi 1996

∀∆,∀α > 0, for n large enough, δ(G ) ≥ (1
2 + α)n⇒ G contains all n-vertex trees of maximum

degree ∆

Pham, Sah, Sawhnhey, Simkin 23

O( 1
n )-spread distribution for perfect matchings, Kr -factor and spanning trees of bounded degree

Bastide, L.-D., Müyesser 23+

O( 1
n )-spread distribution for spanning trees of bounded degree

• Avoids the Regularity Lemma
• Shorter and more flexible proof

• Better constants
• Generalizes painlessly to hypergraphs and digraphs
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Spread distribution on trees of bounded degree

Sketch of proof
To reduce to nicer settings:
• Subdivide T in subtrees of controlled size
• Partition G randomly

Intermediate steps
Embed T of max degree ∆ in G with:

Boosted degree |T | = (1− ε)|G | and δ(G ) ≥ (1− ρ)n

Smaller trees |T | = (1− ε)|G | and δ(G ) ≥ (1
2 + α)n

Final goal |T | = |G | = n and δ(G ) ≥ (1
2 + α)n
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Final Goal

|T | = n and δ(G ) = (1
2 + α)n

Assuming you know how to embed T in G with |T | = (1− ε)n and δ(G ) ≥ (1
2 + α)n

|Ti | ≈ constant fraction of |T \ (
⋃

j<i Ti )|
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Intermediate goal: Embed smaller trees

|T | = (1− ε)n and δ(G ) = (1
2 + α)n

• Same color = roughly the same size
• Linearly many Ti ’s in each color class

• Almost all Vi are α/2-Dirac
• Almost all (Vi ,Vj) share good minimum

degree
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First step: Boosted minimal degree of G

|T | = (1− ε)n and δ(G ) = (1− ρ)n and respect the coloring
• For every color c , |T ∩ c | ≤ (1− η)|V ∩ c |

• Fix some BFS ordering of V (T )

• Following the ordering, embed each node x in its color class, among the free vertices of
N(φ(p))

p

x

• |N(φ(p)) ∩ c| ≥ (1− ρ)|V (G ) ∩ c |
with ρ� η

• linearly many choices for φ(x)
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Future work

• Spread distribution for spanning grids when δ(G ) ≥ (1
2 + α)n

Subdivision arguments do not work as nicely
• Extend our result to graphs of bandwidth o(n) when δ(G ) ≥ (1

2 + α)n
Probabilistic analysis more complex

Thanks!
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