

Directed hypergraph connectivity augmentation by hyperarc reorientation

Joint work with: Moritz Mühlenthaler and Zoltán Szigeti

Benjamin Peyrille

November 23th 2023

G-SCOP

The context Framework for augmentation The algorithm Hypergraphs Reconfiguration •00 00 0000 0000 000 000 000

Edge connectivity

A graph G = (V, E) is k-edge-connected if and only if for all non-empty vertex set $X \neq V$: $d(X) \geq k$.

G-SCOP

The contextFramework for augmentationThe algorithmHypergraphsReconfiguration00000000000000000

Edge connectivity

A graph G = (V, E) is k-edge-connected if and only if for all non-empty vertex set $X \neq V$: $d(X) \geq k$.

This graph is 2-edge-connected.

Arc connectivity

A graph orientation $\vec{G} = (V, A)$ is *k*-arc-connected if and only if for all non-empty vertex set $X \neq V$: $d^{-}(X) \geq k$.

Arc connectivity

A graph orientation $\vec{G} = (V, A)$ is *k*-arc-connected if and only if for all non-empty vertex set $X \neq V$: $d^{-}(X) \geq k$.

This orientation is 0-arc-connected.

The context Framework for augmentation The algorithm Hypergraphs Reconfiguration 00 00 0000 0000 000 000 000

Augmentation results

Weak Orientation Theorem (Nash-Williams, 1960)

An undirected graph admits a *k*-arc-connected orientation if and only if it is 2*k*-edge-connected.

Augmentation results

Weak Orientation Theorem (Nash-Williams, 1960)

An undirected graph admits a k-arc-connected orientation if and only if it is 2k-edge-connected.

Arc-Connectivity Augmentation (Ito et al., 2021)

Let G = (V, E) be an undirected (2k + 2)-edge-connected graph, D be a k-arc-connected orientation of G. Then, there exist orientations D_1, D_2, \ldots, D_ℓ of G such that

- D_i is obtained from D_{i-1} by reversing an arc of D_{i-1} ,
- ► $\ell \leq |V|^3$,
- ► $\lambda(D) \leq \lambda(D_1) \leq \lambda(D_2) \leq \ldots \leq \lambda(D_\ell) = k + 1.$

Furthermore, such orientations can be found in polynomial time.

Reversing an (s, t)-path only changes the connectivity of vertex sets separating s and t.

Reversing an (s, t)-path only changes the connectivity of vertex sets separating s and t.

We will iteratively reverse (s, t)-paths connecting a minimal set S of in-degree k (in-tight T^-) to a minimal set T of out-degree k (out-tight T^+). We call s a source and t a sink.

Connectivity loss by path-reversal.

Connectivity loss by Connectivity loss by path-reversal. arc-reversal.

We introduce a new family \mathcal{R}^- containing the minimum in-tight sets containing an out-tight set.

We introduce a new family \mathcal{R}^- containing the minimum in-tight sets containing an out-tight set.

Restraining our paths to R prevents path-reversal connectivity loss. Thus, we search for s and t in R.

We reverse our (s, t)-path from end to start. For any vertex set X entered that doesn't contain t, $d^+(X)$ is temporarily decreased by 1.

We reverse our (s, t)-path from end to start. For any vertex set X entered that doesn't contain t, $d^+(X)$ is temporarily decreased by 1.

Our (s, t)-path must not enter any out-tight set that doesn't contain t.

How to do something: safe sources

The context Framework for augmentation The algorithm Hypergraphs Reconfiguration

A vertex **s** is a safe source for $S \in \mathcal{M}^-$ if:

- (Safe) If $s \in Y \in \mathcal{T}^+$ then $S \subset Y$.
- (Useful) If $s \in Z$ such that $d^+(Z) = k + 1$ and $S \not\subseteq Z$ then there exists an out-tight set in Z that doesn't contain s.

- Pick a set $R \in \mathbb{R}^-$ (If none, flip orientation).
- Pick a safe source *s* in a minimal set $S \in T^-$ with $S \subseteq R$.
- Search for a minimum out-tight set T in R. If the search enters an out-tight set, don't exit it.
- ► Once the search gets inside a minimum out-tight set T, find a safe sink t in T.
- ▶ Reverse the search (*s*, *t*)-path!

Because of the search rule, the path never leaves any out-tight set.

Repeat until no tight sets remain $\implies \lambda(D) = k + 1$.

Let's reconfigure!

Hypergraphs

Hypergraph

- A hypergraph $\mathcal{H} = (V, \mathcal{E})$ is composed of:
 - Vertices in V
 - Hyperedges in *E*, linking vertices together

Hypergraphs

Hypergraph

- A hypergraph $\mathcal{H} = (V, \mathcal{E})$ is composed of:
 - ► Vertices in V
 - Hyperedges in *E*, linking vertices together

Partition-connectivity

 \mathcal{H} is (k, k)-partition-connected if for any partition \mathcal{P} of V, at least $k|\mathcal{P}|$ hyperedges intersect at least 2 members of \mathcal{P} : $e_{\mathcal{H}}(\mathcal{P}) \geq k|\mathcal{P}|$.

Partition-connectivity is a stronger version of edge-connectivity.

G-SCOP

The context Framework for augmentation The algorithm Hypergraphs Reconfiguration

Directed Hypergraphs

Directed Hypergraph

A directed hypergraph $\vec{\mathcal{H}} = (V, \mathcal{A})$ is composed of:

- ► Vertices in V
- Hyperarcs in A with a unique head vertex

G-SCOP

Directed Hypergraphs

Directed Hypergraph

A directed hypergraph $\vec{\mathcal{H}} = (V, \mathcal{A})$ is composed of:

- ► Vertices in V
- Hyperarcs in A with a unique head vertex

Hyperarc-connectivity

 $\vec{\mathcal{H}}$ is *k*-hyperarc-connected if for any non-empty vertex set $X \neq V$, at least *k* hyperarcs enter *X*.

Towards generalization

Theorem on hypergraph orientations (Frank, Király, Király, 2003)

A hypergraph \mathcal{H} admits a *k*-hyperarc-connected orientation if and only if it is (k, k)-partition-connected.

Towards generalization

Theorem on hypergraph orientations (Frank, Király, Király, 2003)

A hypergraph \mathcal{H} admits a *k*-hyperarc-connected orientation if and only if it is (k, k)-partition-connected.

Towards generalization

Theorem on hypergraph orientations (Frank, Király, Király, 2003)

A hypergraph \mathcal{H} admits a *k*-hyperarc-connected orientation if and only if it is (k, k)-partition-connected.

Towards generalization

Theorem on hypergraph orientations (Frank, Király, Király, 2003)

A hypergraph \mathcal{H} admits a *k*-hyperarc-connected orientation if and only if it is (k, k)-partition-connected.

Towards generalization

Theorem on hypergraph orientations (Frank, Király, Király, 2003)

A hypergraph \mathcal{H} admits a *k*-hyperarc-connected orientation if and only if it is (k, k)-partition-connected.

Towards generalization

Theorem on hypergraph orientations (Frank, Király, Király, 2003)

A hypergraph \mathcal{H} admits a *k*-hyperarc-connected orientation if and only if it is (k, k)-partition-connected.

Our result

Hyperarc-Connectivity Augmentation

Let $\mathcal{H} = (V, E)$ be a (k + 1, k + 1)-partition-connected hypergraph and \mathcal{D} be a k-hyperarc-connected orientation of \mathcal{H} . Then, there exist orientations $\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_\ell$ of \mathcal{H} such that

• \mathcal{D}_i is obtained from \mathcal{D}_{i-1} by reorienting a hyperarc of \mathcal{D}_{i-1} ,

•
$$\ell \leq |V|^3$$

► $\lambda(\mathcal{D}) \leq \lambda(\mathcal{D}_1) \leq \lambda(\mathcal{D}_2) \leq \ldots \leq \lambda(\mathcal{D}_\ell) = k + 1.$

Furthermore, such orientations can be found in polynomial time.

Our result

Hyperarc-Connectivity Augmentation

Let $\mathcal{H} = (V, E)$ be a (k + 1, k + 1)-partition-connected hypergraph and \mathcal{D} be a k-hyperarc-connected orientation of \mathcal{H} . Then, there exist orientations $\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_\ell$ of \mathcal{H} such that

• \mathcal{D}_i is obtained from \mathcal{D}_{i-1} by reorienting a hyperarc of \mathcal{D}_{i-1} ,

►
$$\ell \leq |V|^3$$

 $\blacktriangleright \ \lambda(\mathcal{D}) \leq \lambda(\mathcal{D}_1) \leq \lambda(\mathcal{D}_2) \leq \ldots \leq \lambda(\mathcal{D}_\ell) = k+1.$

Furthermore, such orientations can be found in polynomial time.

This is the first algorithm to compute a k-hyperarc-connected orientation of a hypergraph.

Frank's result : path and cycle reversing

Framework for augmentation The algorithm Hypergraphs Reconfiguration

000

Reconfiguration of two k-arc-connected orientations (1982)

The context

Given two *k*-arc-connected orientations D, D' of a 2k-edge-connected graph G, there exist *k*-arc-connected orientations $D = D_1, D_2, \dots, D_{\ell} = D'$ of G such that D_i is obtained from D_{i-1} by reversing a path or a cycle.

Applying this theorem arc-by-arc may decrease the connectivity by one temporarily.

Ito et al.'s result on reconfiguration

Reconfiguration reachability of k-arc-connected orientations

Given two *k*-arc-connected orientations D, D' of a (2k + 2)-edge-connected graph G, there exist *k*-arc-connected orientations $D = D_1, D_2, \dots, D_{\ell} = D'$ of G such that D_i is obtained from D_{i-1} by reversing an arc of D_{i-1} . Furthermore, such orientations can be found in polynomial time.

Ito et al.'s result on reconfiguration

Reconfiguration reachability of k-arc-connected orientations

Given two *k*-arc-connected orientations D, D' of a (2k + 2)-edge-connected graph G, there exist *k*-arc-connected orientations $D = D_1, D_2, \dots, D_{\ell} = D'$ of G such that D_i is obtained from D_{i-1} by reversing an arc of D_{i-1} . Furthermore, such orientations can be found in polynomial time.

We augment D and D' to (k + 1)-arc-connectivity, then we apply Frank's reconfiguration algorithm arc-by-arc.

G-SCOP

The context Framework for augmentation The algorithm Hypergraphs Reconfiguration

It works on hypergraphs

We can adapt the proof of Frank to work on hypergraph orientations, leading to the following generalization.

Reconfiguration reachability of *k*-hyper-connected orientations

Given two *k*-hyperarc-connected orientations $\mathcal{D}, \mathcal{D}'$ of a (k+1, k+1)-partition-connected hypergraph \mathcal{H} , there exist *k*-hyperarc-connected orientations $\mathcal{D} = \mathcal{D}_1, \mathcal{D}_2, \cdots, \mathcal{D}_{\ell} = \mathcal{D}'$ of \mathcal{H} such that \mathcal{D}_i is obtained from \mathcal{D}_{i-1} by reorienting an hyperarc of D_{i-1} . Furthermore, such orientations can be found in polynomial time.

We generalized the results of Ito et al. to hypergraphs:

- We provided the first combinatorial algorithm for computing a k-hyperarc-connected orientation of a hypergraph.
- ► We show it is possible to reconfigure a *k*-hyperarc-connected orientation of a hypergraph into any other, if the hypergraph is (*k* + 1, *k* + 1)-partition-connected.

Open questions:

- Our upper bound on the number of reorientated hyperarcs is $|V|^3$. Can we do lower? (maybe $|V|^2$)
- ► The target when augmenting is d⁻(X) ≥ k. For which f can we replace k with f(X)?

We generalized the results of Ito et al. to hypergraphs:

- We provided the first combinatorial algorithm for computing a k-hyperarc-connected orientation of a hypergraph.
- ► We show it is possible to reconfigure a k-hyperarc-connected orientation of a hypergraph into any other, if the hypergraph is (k + 1, k + 1)-partition-connected.

Open questions:

- Our upper bound on the number of reorientated hyperarcs is $|V|^3$. Can we do lower? (maybe $|V|^2$)
- ▶ The target when augmenting is $d^-(X) \ge k$. For which f can we replace k with f(X)?