Directed hypergraph connectivity augmentation by hyperarc reorientation

Joint work with: Moritz Mühlenhalar and Zoltán Szigeti

Benjamin Peyrille

November 23th 2023
Edge connectivity

A graph $G = (V, E)$ is \textit{k-edge-connected} if and only if for all non-empty vertex set $X \neq V : d(X) \geq k$.

This graph is 2-edge-connected.
Edge connectivity

A graph $G = (V, E)$ is k-edge-connected if and only if for all non-empty vertex set $X \neq V : d(X) \geq k$.

This graph is 2-edge-connected.
Arc connectivity

A graph orientation $\vec{G} = (V, A)$ is k-arc-connected if and only if for all non-empty vertex set $X \neq V$: $d^-(X) \geq k$.

Diagram of a graph orientation with arrows indicating directed edges.
Arc connectivity

A graph orientation $\vec{G} = (V, A)$ is k-arc-connected if and only if for all non-empty vertex set $X \neq V$: $d^-(X) \geq k$.

This orientation is 0-arc-connected.
Weak Orientation Theorem (Nash-Williams, 1960)

An undirected graph admits a k-arc-connected orientation if and only if it is $2k$-edge-connected.
Weak Orientation Theorem (Nash-Williams, 1960)

An undirected graph admits a k-arc-connected orientation if and only if it is $2k$-edge-connected.

Arc-Connectivity Augmentation (Ito et al., 2021)

Let $G = (V, E)$ be an undirected $(2k + 2)$-edge-connected graph, D be a k-arc-connected orientation of G. Then, there exist orientations D_1, D_2, \ldots, D_ℓ of G such that

- D_i is obtained from D_{i-1} by reversing an arc of D_{i-1},
- $\ell \leq |V|^3$,
- $\lambda(D) \leq \lambda(D_1) \leq \lambda(D_2) \leq \ldots \leq \lambda(D_\ell) = k + 1$.

Furthermore, such orientations can be found in polynomial time.
The key idea of Ito et al.

Reversing an \((s, t)\)-path only changes the connectivity of vertex sets separating \(s\) and \(t\).
The key idea of Ito et al.

Reversing an \((s, t)\)-path only changes the connectivity of vertex sets separating \(s\) and \(t\).

We will iteratively reverse \((s, t)\)-paths connecting a minimal set \(S\) of in-degree \(k\) (\textit{in-tight} \(T^-\)) to a minimal set \(T\) of out-degree \(k\) (\textit{out-tight} \(T^+\)). We call \(s\) a \textit{source} and \(t\) a \textit{sink}.
Connectivity loss by path-reversal.

Connectivity loss by arc-reversal.
Connectivity loss by path-reversal.

Connectivity loss by arc-reversal.

The dangers

Dangers:
- Connectivity loss by path-reversal.
- Connectivity loss by arc-reversal.
The dangers

Connectivity loss by path-reversal.

Connectivity loss by arc-reversal.

Useless paths.
How to preserve connectivity: path errors

We introduce a new family R^- containing the minimum in-tight sets containing an out-tight set.
How to preserve connectivity: path errors

We introduce a new family R^- containing the minimum in-tight sets containing an out-tight set.

Restraining our paths to R prevents path-reversal connectivity loss. Thus, we search for s and t in R.
How to preserve connectivity: arc errors

We reverse our \((s, t)\)-path from end to start.
For any vertex set \(X\) entered that doesn’t contain \(t\), \(d^+(X)\) is temporarily decreased by 1.

\[\cdots \rightarrow \circ \rightarrow \circ \rightarrow \cdots\]

Step 1

\[\cdots \rightarrow \circ \rightarrow \circ \rightarrow \cdots\]

Step 2

\[\cdots \leftarrow \circ \leftarrow \circ \leftarrow \cdots\]

Step 3
How to preserve connectivity: arc errors

We reverse our \((s, t)\)-path from end to start.
For any vertex set \(X\) entered that doesn't contain \(t\), \(d^+(X)\) is temporarily decreased by 1.

\[
\begin{array}{ccc}
\cdots & \circlearrowright & \cdots \\
\text{Step 1} & & \\
\cdots & \circlearrowleft & \cdots \\
\text{Step 2} & & \\
\cdots & \circlearrowleft & \cdots \\
\text{Step 3} & & \\
\end{array}
\]

Our \((s, t)\)-path must not enter any out-tight set that doesn't contain \(t\).
How to do something: safe sources

A vertex s is a safe source for $S \in \mathcal{M}^-$ if:

- (Safe) If $s \in Y \in \mathcal{T}^+$ then $S \subset Y$.
- (Useful) If $s \in Z$ such that $d^+(Z) = k + 1$ and $S \not\subseteq Z$ then there exists an out-tight set in Z that doesn’t contain s.

![Diagram showing safe and not safe vertices](image)
Algorithm

- Pick a set \(R \in \mathcal{R}^- \) (If none, flip orientation).
- Pick a safe source \(s \) in a minimal set \(S \in \mathcal{T}^- \) with \(S \subseteq R \).
- Search for a minimum out-tight set \(T \) in \(R \).
 If the search enters an out-tight set, don’t exit it.
- Once the search gets inside a minimum out-tight set \(T \), find a safe sink \(t \) in \(T \).
- Reverse the search \((s, t)\)-path!

Because of the search rule, the path never leaves any out-tight set.

Repeat until no tight sets remain \(\implies \lambda(D) = k + 1 \).
Context: G is 4-edge-connected and \vec{G} is 1-arc-connected.
Let’s reconfigure!

Context: G is 4-edge-connected and \tilde{G} is 1-arc-connected.
Let’s reconfigure!

Context: G is 4-edge-connected and \vec{G} is 1-arc-connected.
Let’s reconfigure!

Context: G is 4-edge-connected and \tilde{G} is 1-arc-connected.
Context: G is 4-edge-connected and \tilde{G} is 1-arc-connected.
Let's reconfigure!

Context: G is 4-edge-connected and \tilde{G} is 1-arc-connected.
Let’s reconfigure!

Context: G is 4-edge-connected and \tilde{G} is 1-arc-connected.
Hypergraph

A hypergraph $\mathcal{H} = (V, E)$ is composed of:

- Vertices in V
- Hyperedges in E, linking vertices together
Hypergraph

A hypergraph $\mathcal{H} = (V, E)$ is composed of:

- Vertices in V
- Hyperedges in E, linking vertices together

Partition-connectivity

\mathcal{H} is (k, k)-partition-connected if for any partition \mathcal{P} of V, at least $k|\mathcal{P}|$ hyperedges intersect at least 2 members of \mathcal{P}:

$$e_{\mathcal{H}}(\mathcal{P}) \geq k|\mathcal{P}|.$$

Partition-connectivity is a stronger version of edge-connectivity.
Directed Hypergraph

A directed hypergraph $\vec{H} = (V, A)$ is composed of:

- Vertices in V
- Hyperarcs in A with a unique head vertex
A directed hypergraph $\vec{H} = (V, A)$ is composed of:
- Vertices in V
- Hyperarcs in A with a unique head vertex

The hyperarc-connectivity \vec{H} is k-hyperarc-connected if for any non-empty vertex set $X \neq V$, at least k hyperarcs enter X.
Towards generalization

Theorem on hypergraph orientations (Frank, Király, Király, 2003)

A hypergraph \mathcal{H} admits a k-hyperarc-connected orientation if and only if it is (k, k)-partition-connected.
Towards generalization

Theorem on hypergraph orientations (Frank, Király, Király, 2003)

A hypergraph \mathcal{H} admits a k-hyperarc-connected orientation if and only if it is (k, k)-partition-connected.

Most of the previous ideas work for connectivity augmentation! Instead of finding good paths, we find good hyperpaths and reverse them.
Towards generalization

Theorem on hypergraph orientations (Frank, Király, Király, 2003)

A hypergraph \mathcal{H} admits a k-hyperarc-connected orientation if and only if it is (k, k)-partition-connected.

Most of the previous ideas work for connectivity augmentation! Instead of finding good paths, we find good hyperpaths and reverse them.
Towards generalization

Theorem on hypergraph orientations (Frank, Király, Király, 2003)

A hypergraph \mathcal{H} admits a k-hyperarc-connected orientation if and only if it is (k, k)-partition-connected.

Most of the previous ideas work for connectivity augmentation!
Instead of finding good paths, we find good hyperpaths and reverse them.
Towards generalization

Theorem on hypergraph orientations (Frank, Király, Király, 2003)

A hypergraph \mathcal{H} admits a k-hyperarc-connected orientation if and only if it is (k, k)-partition-connected.

Most of the previous ideas work for connectivity augmentation! Instead of finding good paths, we find good hyperpaths and reverse them.
Towards generalization

Theorem on hypergraph orientations (Frank, Király, Király, 2003)

A hypergraph \mathcal{H} admits a k-hyperarc-connected orientation if and only if it is (k, k)-partition-connected.

Most of the previous ideas work for connectivity augmentation! Instead of finding good paths, we find good hyperpaths and reverse them.
Hyperarc-Connectivity Augmentation

Let $\mathcal{H} = (V, E)$ be a $(k + 1, k + 1)$-partition-connected hypergraph and \mathcal{D} be a k-hyperarc-connected orientation of \mathcal{H}. Then, there exist orientations $\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_\ell$ of \mathcal{H} such that

1. \mathcal{D}_i is obtained from \mathcal{D}_{i-1} by reorienting a hyperarc of \mathcal{D}_{i-1},
2. $\ell \leq |V|^3$,
3. $\lambda(\mathcal{D}) \leq \lambda(\mathcal{D}_1) \leq \lambda(\mathcal{D}_2) \leq \ldots \leq \lambda(\mathcal{D}_\ell) = k + 1$.

Furthermore, such orientations can be found in polynomial time.
Our result

Hyperarc-Connectivity Augmentation

Let $\mathcal{H} = (V, E)$ be a $(k + 1, k + 1)$-partition-connected hypergraph and \mathcal{D} be a k-hyperarc-connected orientation of \mathcal{H}. Then, there exist orientations $\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_\ell$ of \mathcal{H} such that

- \mathcal{D}_i is obtained from \mathcal{D}_{i-1} by reorienting a hyperarc of \mathcal{D}_{i-1},
- $\ell \leq |V|^3$,
- $\lambda(\mathcal{D}) \leq \lambda(\mathcal{D}_1) \leq \lambda(\mathcal{D}_2) \leq \ldots \leq \lambda(\mathcal{D}_\ell) = k + 1$.

Furthermore, such orientations can be found in polynomial time.

This is the first algorithm to compute a k-hyperarc-connected orientation of a hypergraph.
Frank’s result: path and cycle reversing

Reconfiguration of two k-arc-connected orientations (1982)

Given two k-arc-connected orientations D, D' of a $2k$-edge-connected graph G, there exist k-arc-connected orientations $D = D_1, D_2, \cdots, D_{\ell} = D'$ of G such that D_i is obtained from D_{i-1} by reversing a path or a cycle.

Applying this theorem arc-by-arc may decrease the connectivity by one temporarily.
Ito et al.’s result on reconfiguration

Reconfiguration reachability of k-arc-connected orientations

Given two k-arc-connected orientations D, D' of a $(2k + 2)$-edge-connected graph G, there exist k-arc-connected orientations $D = D_1, D_2, \cdots, D_\ell = D'$ of G such that D_i is obtained from D_{i-1} by reversing an arc of D_{i-1}. Furthermore, such orientations can be found in polynomial time.
Ito et al.’s result on reconfiguration

Reconfiguration reachability of k-arc-connected orientations

Given two k-arc-connected orientations D, D' of a $(2k + 2)$-edge-connected graph G, there exist k-arc-connected orientations $D = D_1, D_2, \cdots, D_\ell = D'$ of G such that D_i is obtained from D_{i-1} by reversing an arc of D_{i-1}. Furthermore, such orientations can be found in polynomial time.

We augment D and D' to $(k + 1)$-arc-connectivity, then we apply Frank’s reconfiguration algorithm arc-by-arc.
It works on hypergraphs

We can adapt the proof of Frank to work on hypergraph orientations, leading to the following generalization.

Reconfiguration reachability of k-hyper-connected orientations

Given two k-hyperarc-connected orientations $\mathcal{D}, \mathcal{D}'$ of a $(k + 1, k + 1)$-partition-connected hypergraph \mathcal{H}, there exist k-hyperarc-connected orientations $\mathcal{D} = \mathcal{D}_1, \mathcal{D}_2, \cdots, \mathcal{D}_\ell = \mathcal{D}'$ of \mathcal{H} such that \mathcal{D}_i is obtained from \mathcal{D}_{i-1} by reorienting an hyperarc of \mathcal{D}_{i-1}.

Furthermore, such orientations can be found in polynomial time.
We generalized the results of Ito et al. to hypergraphs:

- We provided the first combinatorial algorithm for computing a k-hyperarc-connected orientation of a hypergraph.
- We show it is possible to reconfigure a k-hyperarc-connected orientation of a hypergraph into any other, if the hypergraph is $(k + 1, k + 1)$-partition-connected.

Open questions:

- Our upper bound on the number of reorientated hyperarcs is $|V|^3$. Can we do lower? (maybe $|V|^2$)
- The target when augmenting is $d^-(X) \geq k$. For which f can we replace k with $f(X)$?
We generalized the results of Ito et al. to hypergraphs:

- We provided the first combinatorial algorithm for computing a k-hyperarc-connected orientation of a hypergraph.
- We show it is possible to reconfigure a k-hyperarc-connected orientation of a hypergraph into any other, if the hypergraph is $(k+1, k+1)$-partition-connected.

Open questions:

- Our upper bound on the number of reorientated hyperarcs is $|V|^3$. Can we do lower? (maybe $|V|^2$)
- The target when augmenting is $d^-(X) \geq k$. For which f can we replace k with $f(X)$?

Merci!