On the parameterized complexity of non-hereditary relaxations of clique

Ambroise Baril, Antoine Castillon, Nacim Oijid

Université de Lorraine, Université de Lille, Université de Lyon

November 2023

Parameterized complexity	Problem studied	<i>s</i> -CLUB	γ- COMPSUBGRAPH	Conclusion
●00		0000000	000	0000
Contents				

NP-hard problem: No polynomial algo unless P=NP.

How to solve it efficiently in practice?

A parameterized problem is a couple (Π, λ) with:

- Π computational problem.
- λ is a **parameter**: ie λ : {Instance of Π } $\mapsto \mathbb{N}$

NP-hard problem: No polynomial algo unless P=NP.

How to solve it efficiently in practice?

A parameterized problem is a couple (Π, λ) with:

- Π computational problem.
- λ is a **parameter**: ie λ : {Instance of Π } $\mapsto \mathbb{N}$

The goal is to find exact algorithms to solve Π that are "fast" if the parameter is low.

For all C > 0, the goal is to solve fast the problem: $\frac{\prod_{\lambda \leq C}}{\text{Input: An instance } x \text{ of } \Pi \text{ with } \lambda(x) \leq C.$ Ouput: The same question as Π on x.

For all C > 0, the goal is to solve fast the problem: $\frac{\Pi_{\lambda \leq C}}{\Pi_{\lambda \leq C}}:$ Input: An instance x of Π with $\lambda(x) \leq C$. Ouput: The same question as Π on x.

 (Π, λ) is said to be:

- **XP** if $\forall C \ge 0, \exists d \ge 0, \Pi_{\lambda \le C}$ is solvable in time $O(n^d)$.
- **FPT** if $\exists d \ge 0, \forall C \ge 0, \Pi_{\lambda \le C}$ is solvable in time $O(n^d)$.

For all C > 0, the goal is to solve fast the problem: $\frac{\prod_{\lambda \leq C}}{\text{Input: An instance } x \text{ of } \Pi \text{ with } \lambda(x) \leq C.$ Ouput: The same question as $\Pi \text{ on } x.$

 (Π, λ) is said to be:

- **XP** if $\forall C \ge 0, \exists d \ge 0, \Pi_{\lambda \le C}$ is solvable in time $O(n^d)$.
- **FPT** if $\exists d \ge 0, \forall C \ge 0, \Pi_{\lambda \le C}$ is solvable in time $O(n^d)$.

Ø: mutual exclusion unless P=NP.
Ø: mutual exclusion unless FPT=W[1].

Parameterized complexity	Problem studied	<i>s</i> -CLUB	γ-COMPSUBGRAPH	Conclusion
	●0000	0000000	000	0000
Contents				

Let $G = (V_G, E_G)$ a graph and $S \subseteq V_G$.

Let
$$G = (V_G, E_G)$$
 a graph and $S \subseteq V_G$.

Distance relaxation: Definition of a clique: S is a clique iff $diam(G[S]) \le 1$.

Let
$$G = (V_G, E_G)$$
 a graph and $S \subseteq V_G$.

Distance relaxation: Definition of a clique: S is a clique iff $diam(G[S]) \le 1$.

Definition of a *s*-club: $(s \ge 1)$ *S* is a *s*-club iff $diam(G[S]) \le s$.

Let
$$G = (V_G, E_G)$$
 a graph and $S \subseteq V_G$.

Distance relaxation: Definition of a clique: S is a clique iff $diam(G[S]) \le 1$.

Definition of a *s*-club: $(s \ge 1)$ *S* is a *s*-club iff $diam(G[S]) \le s$. Degree relaxation: Definition of a clique: S is a clique iff $\forall u \in S, deg_S(u) \ge 1 \cdot (|S| - 1).$

Let
$$G = (V_G, E_G)$$
 a graph and $S \subseteq V_G$.

Distance relaxation: Definition of a clique: S is a clique iff $diam(G[S]) \le 1$.

Definition of a *s*-club: $(s \ge 1)$ *S* is a *s*-club iff $diam(G[S]) \le s$. Degree relaxation: Definition of a clique: S is a clique iff $\forall u \in S, deg_S(u) \ge 1 \cdot (|S| - 1).$

Definition of a γ -complete graph: $(\gamma \in]0,1[)$ *S* is a γ -complete subgraph iff $\forall u \in S, \underline{deg_S(u) \ge \gamma \cdot (|S|-1)}.$

Like **Clique**, we study the problems of decision of the existence of large "clusters":

Like **Clique**, we study the problems of decision of the existence of large "clusters":

For $s \ge 2$:

s-CLUB:

Input: A graph *G*, an integer *k*. **Question:** Does *G* have a *s*-club of size at least *k*? For $\gamma \in]0,1[:$

γ -COMPLETE-SUBGRAPH:

Input: A graph G, an integer k. **Question:** Does G have a γ -complete subgraph of size at least k?

Like **Clique**, we study the problems of decision of the existence of large "clusters":

For $s \ge 2$:

s-CLUB:

Input: A graph *G*, an integer *k*. **Question:** Does *G* have a *s*-club of size at least *k*? For $\gamma \in]0,1[:$

γ -COMPLETE-SUBGRAPH:

Input: A graph G, an integer k. **Question:** Does G have a γ -complete subgraph of size at least k?

Classes of *s*-clubs and γ -complete graphs are not hereditary (stable by vertex deletion)! This raises a lot of technical issues.

Input: A graph G on n vertices, an integer k. **Question:** Does G have a cluster of size at least k?

Input: A graph G on n vertices, an integer k. **Question:** Does G have a cluster of size at least k?

- k: (minimal) number of the vertices inside the cluster we want.
- ℓ:= n-k (maximal) number of the vertices outside of the cluster we want.
- d: Degeneracy of the input graph.

Input: A graph G on n vertices, an integer k. **Question:** Does G have a cluster of size at least k?

- k: (minimal) number of the vertices inside the cluster we want.
- $\ell := n k$ (maximal) number of the vertices outside of the cluster we want.
- d: Degeneracy of the input graph.

Degeneracy of G: min d such that G has a d-elimination order.

Input: A graph G on n vertices, an integer k. **Question:** Does G have a cluster of size at least k?

- k: (minimal) number of the vertices inside the cluster we want.
- $\ell := n k$ (maximal) number of the vertices outside of the cluster we want.
- d: Degeneracy of the input graph.

Degeneracy of G: min d such that G has a d-elimination order.

Figure: Every vertex has at most 2 neighbors on its left

d-elimination order: if by removing the vertices from right to left, we always remove a vertex of degree $\leq d$.

State of the art: (Komusiewicz 2016.)

Problem	k	ℓ	d
Clique	W[1]-h	FPT	FPT
2-club	FPT	FPT	para-NP-h (for <i>d</i> = 6)
<i>s</i> -club with $s \ge 3$	FPT	FPT	?
γ -complete-subgraph	W[1]-h $\forall \gamma \in [\frac{1}{2}, 1[$?	?

Khot, Raman 2001. Baril, Dondi, Hosseinzadeh 2021. Hartung, Komusiewicz, Nichterlein 2015.

State of the art: (Komusiewicz 2016.)

Problem	k	ℓ	d
Clique	W[1]-h	FPT	FPT
2-club	FPT	FPT	para-NP-h (for <i>d</i> = 6)
<i>s</i> -club with $s \ge 3$	FPT	FPT	?
γ -complete-subgraph	W[1]-h $\forall \gamma \in [\frac{1}{2}, 1[$?	?

Khot, Raman 2001. Baril, Dondi, Hosseinzadeh 2021. Hartung, Komusiewicz, Nichterlein 2015.

Contributions:

Problem	k	ℓ	d
Clique	W[1]-h	FPT	FPT
2-club	FPT	FPT	para-NP-h (for $d = 6$)
<i>s</i> -club with $s \ge 3$	FPT	FPT	para-NP-h (for $d = 3$)
γ -complete-subgraph	W[1]-h ∀γ ∈]0,1[W[1]-h	W[1]-h 8

Parameterized complexity	Problem studied	<i>s</i> -CLUB ●000000	γ-COMPSUBGRAPH 000	Conclusion
Contents				

We prove that for all $s \ge 3$, the following problem is NP-hard:

s-CLUB_{d≤3}: Input: A 3-degenerate graph G', an integer k'. Question: Does there exists $S \subseteq V_{G'}$ with $|S| \ge k'$ and $\forall (u,v) \in S^2$, dist_S $(u,v) \le s$?

We prove that for all $s \ge 3$, the following problem is NP-hard:

s-CLUB_{d≤3}: Input: A 3-degenerate graph G', an integer k'. Question: Does there exists $S \subseteq V_{G'}$ with $|S| \ge k'$ and $\forall (u,v) \in S^2$, dist_S $(u,v) \le s$?

by reducing from CLIQUE:

CLIQUE: Input: A graph *G*, an integer *k*. **Question:** Does *G* have a clique of size *k*?

We prove that for all $s \ge 3$, the following problem is NP-hard:

s-CLUB_{d≤3}: Input: A 3-degenerate graph G', an integer k'. Question: Does there exists $S \subseteq V_{G'}$ with $|S| \ge k'$ and $\forall (u,v) \in S^2$, dist_S $(u,v) \le s$?

by reducing from CLIQUE:

CLIQUE: Input: A graph *G*, an integer *k*. **Question:** Does *G* have a clique of size *k*?

The *blue* vertices denote the original vertices (of G).

Vertices of other colors will be used to build G' starting from G.

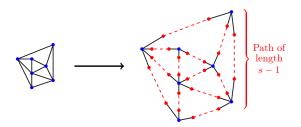


Figure: First step: lowering the degeneracy

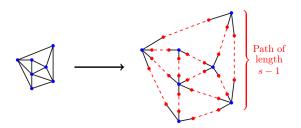


Figure: First step: lowering the degeneracy

- The graph obtained is 2-degenerate
- For blue vertices: Distance 1 in $G \iff$ Distance s-1 in G'

Parameterized complexity	Problem studied	<i>s</i> -CLUB 000€000	γ- COMPSUBGRAPH 000	Conclusion 0000
Yellow Vertex				

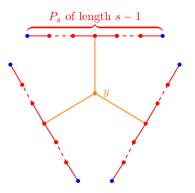


Figure: We add a vertex y linked to each "middle" red vertex

Works only for *s* odd (for the "middle" vertex to exist).

- $dist_{G'}(u, v) \leq s$ if u and v are not both blue.
- $dist_{G'}(u, v) = s 1$ else if $\{u, v\} \in E_G$.
- $dist_{G'}(u, v) = s + 1$ else if $\{u, v\} \notin E_G$: Forbidden in a s-club.

- $dist_{G'}(u, v) \leq s$ if u and v are not both blue.
- $dist_{G'}(u, v) = s 1$ else if $\{u, v\} \in E_G$.
- $dist_{G'}(u, v) = s + 1$ else if $\{u, v\} \notin E_G$: Forbidden in a s-club.

G has a clique of size k.

\Leftrightarrow

G' has a *s*-club of size $\geq k + \#RedVertices + 1$.

- $dist_{G'}(u, v) \leq s$ if u and v are not both blue.
- $dist_{G'}(u, v) = s 1$ else if $\{u, v\} \in E_G$.
- $dist_{G'}(u, v) = s + 1$ else if $\{u, v\} \notin E_G$: Forbidden in a s-club.

G has a clique of size k. \iff G' has a s-club of size $\ge k + \# RedVertices + 1$.

K clique in *G* of size $k \implies S = K \cup \{\text{Red}\} \cup \{y\}$ is a *s*-club in *G'*.

- $dist_{G'}(u, v) \leq s$ if u and v are not both blue.
- $dist_{G'}(u, v) = s 1$ else if $\{u, v\} \in E_G$.
- $dist_{G'}(u, v) = s + 1$ else if $\{u, v\} \notin E_G$: Forbidden in a s-club.

G has a clique of size k. \iff G' has a *s*-club of size $\ge k + \# RedVertices + 1$.

K clique in *G* of size $k \implies S = K \cup \{\text{Red}\} \cup \{y\}$ is a *s*-club in *G'*.

S s-club in G' of size ... \implies S \cap {Blue} is a clique in G of size k.

Parameterized complexity	Problem studied	<i>s</i> -CLUB 00000●0	γ-COMPSUBGRAPH ୦୦୦	Conclusion 0000
Degeneracy of (G'			

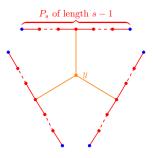


Figure: Graph G'

2-elimination order:

Blue and $y \leq$ Middle Red vertices \leq Other red vertices

Parameterized complexity	Problem studied	<i>s</i> -CLUB 00000●0	γ-COMPSUBGRAPH ୦୦୦	Conclusion 0000
Degeneracy of (G'			

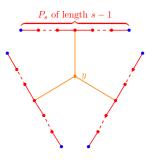


Figure: Graph G'

2-elimination order:

Blue and $y \leq$ Middle Red vertices \leq Other red vertices

Works only if $s \ge 5$. If s = 3, G' is only 3-degenerate.

The ideas is the same but the reduction is more complicated.

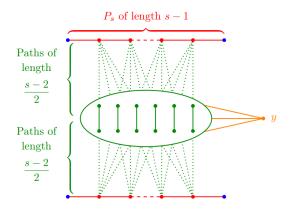


Figure: Reduction to s-club with s even

Parameterized complexity	Problem studied	<i>s</i> -CLUB 0000000	γ-COMPSUBGRAPH ●০০	Conclusion
Contents				

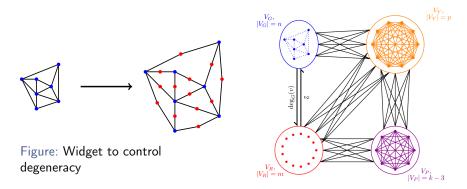


Figure: Whole reduction

This leads to $(\gamma$ -COMPLETE-SUBGRAPH, d) being W[1]-hard.

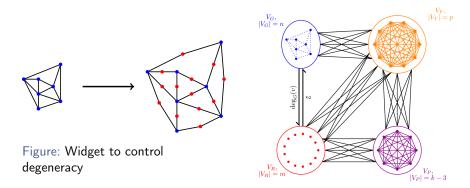
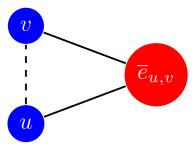


Figure: Whole reduction

This leads to $(\gamma$ -COMPLETE-SUBGRAPH, d) being W[1]-hard.

We also get that $(\gamma$ -COMPLETE-SUBGRAPH, k) is W[1]-hard.

Parameterized reduction for ℓ



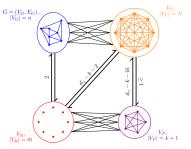
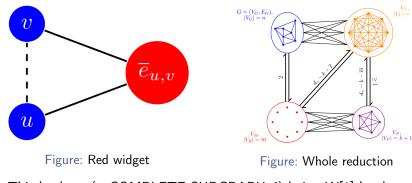


Figure: Red widget

Figure: Whole reduction

This leads to $(\gamma$ -COMPLETE-SUBGRAPH, ℓ) being W[1]-hard.

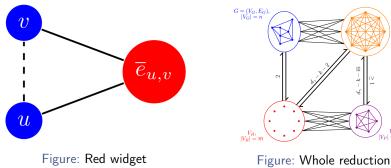
Parameterized reduction for ℓ



This leads to $(\gamma$ -COMPLETE-SUBGRAPH, ℓ) being W[1]-hard.

Surprising result! *s*-PLEX: each vertex has at most *s* non neighbors.

Parameterized reduction for ℓ



rigure. Whole reduction

This leads to $(\gamma$ -COMPLETE-SUBGRAPH, ℓ) being W[1]-hard.

Surprising result! s-PLEX: each vertex has at most s non neighbors.

 $(s-\text{PLEX},\ell) \in \text{FPT}.$

 $|V_P| = k + 1$

Parameterized complexity	Problem studied	<i>s</i> -CLUB 0000000	γ-COMPSUBGRAPH ୦୦୦	Conclusion ●○○○
Contents				

Parameterized complexity	Problem studied	<i>s</i> -CLUB 0000000	γ -COMPSUBGRAPH 000	Conclusion 0●00
Contributions				

State of the art: (Komusiewicz 2016.)

Problem	k	ℓ	d
Clique	W[1]-h	FPT	FPT
2-club	FPT	FPT	para-NP-h (for <i>d</i> = 6)
<i>s</i> -club with $s \ge 3$	FPT	FPT	?
γ -complete-subgraph	W[1]-h $\forall \gamma \in [\frac{1}{2}, 1[$?	?

Khot, Raman 2001. Baril, Dondi, Hosseinzadeh 2021. Hartung, Komusiewicz, Nichterlein 2015.

Parameterized complexity	Problem studied	<i>s</i> -CLUB 0000000	γ- COMPSUBGRAPH 000	Conclusion 0●00
Contributions				

State of the art: (Komusiewicz 2016.)

Problem	k	ℓ	d
Clique	W[1]-h	FPT	FPT
2-club	FPT	FPT	para-NP-h (for <i>d</i> = 6)
<i>s</i> -club with $s \ge 3$	FPT	FPT	?
γ -complete-subgraph	W[1]-h $\forall \gamma \in [\frac{1}{2}, 1[$?	?

Khot, Raman 2001. Baril, Dondi, Hosseinzadeh 2021. Hartung, Komusiewicz, Nichterlein 2015.

Contributions:

Problem	k	ℓ	d
Clique	W[1]-h	FPT	FPT
2-club	FPT	FPT	para-NP-h (for $d = 6$)
<i>s</i> -club with $s \ge 3$	FPT	FPT	para-NP-h (for $d = 3$)
γ -complete-subgraph	W[1]-h $\forall \gamma \in]0,1[$	W[1]-h	W[1]-h 20

State of the art: (Komusiewicz 2016.)

Problem	k	ℓ	h	d
Clique	W[1]-h	FPT	FPT	FPT
2-club	FPT	FPT	W[1]-h	para-NP-h
<i>s</i> -club with $s \ge 3$	FPT	FPT	?	para-NP-h
γ -complete-subgraph	W[1]-h	W[1]-h	FPT	W[1]-h

Khot, Raman 2001. Baril, Dondi, Hosseinzadeh 2021. Hartung, Komusiewicz, Nichterlein 2015.

State of the art: (Komusiewicz 2016.)

Problem	k	ℓ	h	d
Clique	W[1]-h	FPT	FPT	FPT
2-club	FPT	FPT	W[1]-h	para-NP-h
<i>s</i> -club with $s \ge 3$	FPT	FPT	?	para-NP-h
γ -complete-subgraph	W[1]-h	W[1]-h	FPT	W[1]-h

Khot, Raman 2001. Baril, Dondi, Hosseinzadeh 2021. Hartung, Komusiewicz, Nichterlein 2015.

Is (2-CLUB, h) para-NP-hard? Or is it XP?

State of the art: (Komusiewicz 2016.)

Problem	k	ℓ	h	d
Clique	W[1]-h	FPT	FPT	FPT
2-club	FPT	FPT	W[1]-h	para-NP-h
<i>s</i> -club with $s \ge 3$	FPT	FPT	?	para-NP-h
γ -complete-subgraph	W[1]-h	W[1]-h	FPT	W[1]-h

Khot, Raman 2001. Baril, Dondi, Hosseinzadeh 2021. Hartung, Komusiewicz, Nichterlein 2015.

Is (2-CLUB, h) para-NP-hard? Or is it XP?

Many other relaxations of CLIQUE.

	oblem studied
--	---------------

s-CLUB 0000000 γ-COMP.-SUBGRAPI

Conclusion 000●

My collaborators



Figure: J

Figure: G

Figure: A