Recognizing unit multiple interval graphs is hard

$\underline{\text { Virginia Ardévol Martínez }}{ }^{1}$ Romeo Rizzi ${ }^{2}$ Florian Sikora ${ }^{1}$ Stéphane Vialette ${ }^{3}$
${ }^{1}$ LAMSADE, Université Paris Dauphine-PSL
${ }^{2}$ University of Verona
${ }^{3}$ LIGM, Université Gustave Eiffel

November 22, 2023

Motivating example

Suppose that we have a timetable of courses and we want to see which courses we can take:

Motivating example

Suppose that we have a timetable of courses and we want to see which courses we can take:

Motivating example

Suppose now that each course is split into a theoretical part and a practical part.

Motivating example

Suppose now that each course is split into a theoretical part and a practical part.

Graph representing the incompatibilities:

Motivating example

We can also ask for additional requirements, for example, for all the lectures to have the same duration.

Graph representing the incompatibilities:

Problem Statement

Interval graphs

Definition

A graph is an interval graph if every vertex can be represented by an interval in such a way that there exists an edge between two vertices if and only if their corresponding intervals intersect.

Figure 4: Interval graph and its associated interval representation.

Interval graphs

Definition

A graph is an interval graph if every vertex can be represented by an interval in such a way that there exists an edge between two vertices if and only if their corresponding intervals intersect.

Figure 5: The cycle C_{4} is not an interval graph.

Multiple interval graphs

Definition

A graph G is a d-interval graph if there exists a bijection from the vertices of G to a set of d-intervals (the union of d disjoint intervals) such that there exists an edge between two vertices if and only if their corresponding d-intervals intersect.

Figure 6: A 2-interval graph of four 2-intervals.

Unit interval graphs

Definition

- A (multiple) interval graph is unit if there exists a (multiple) interval representation where every interval has unit length.
- A (multiple) interval graph is proper if there exists a (multiple) interval representation where no interval properly contains another one.

Figure 7: Unit/proper interval graph and its associated unit/proper interval representation.

Roberts' characterization

Theorem (Roberts' characterization of unit interval graphs)
For an undirected graph G, the following are equivalent:
(1) G is a proper interval graph.
(2) G is a unit interval graph.
(3) G is a $K_{1,3}$-free interval graph.

Figure 8: A unit interval graph cannot contain an induced $K_{1,3}$

Roberts' characterization

Theorem (Roberts' characterization of unit interval graphs)
For an undirected graph G, the following are equivalent:
(1) G is a proper interval graph.
(2) G is a unit interval graph.
(3) G is a $K_{1,3}$-free interval graph.

Figure 8: A unit interval graph cannot contain an induced $K_{1,3}$

Roberts' characterization

Theorem (Roberts' characterization of unit interval graphs)
For an undirected graph G, the following are equivalent:
(1) G is a proper interval graph.
(2) G is a unit interval graph.
(3) G is a $K_{1,3}$-free interval graph.

Figure 8: A unit interval graph cannot contain an induced $K_{1,3}$

Complexity of recognition of related classes

- Recognizing interval graphs and unit interval graphs can be done in linear time [Booth and Lueker, 76].
- Recognizing (unit [Jiang, 2013]) d-track interval graphs is NP-complete for any $d \geq 2$ [Gyárfás and West 95].
- Recognizing d-interval graphs is NP-complete for any $d \geq 2$ [West and Shmoys, 84].

	Interval graphs	Multiple track interval graphs	Multiple interval graphs
Unrestricted	Linear	NP-complete	NP-complete
Unit	Linear	NP-complete	$?$

Table 1: Known complexities of recognizing interval graphs and related classes.

Complexity of recognition of related classes

- Recognizing interval graphs and unit interval graphs can be done in linear time [Booth and Lueker, 76].
- Recognizing (unit [Jiang, 2013]) d-track interval graphs is NP-complete for any $d \geq 2$ [Gyárfás and West 95].
- Recognizing d-interval graphs is NP-complete for any $d \geq 2$ [West and Shmoys, 84].

	Interval graphs	Multiple track interval graphs	Multiple interval graphs
Unrestricted	Linear	NP-complete	NP-complete
Unit	Linear	NP-complete	NP-complete

Table 1: Known complexities of recognizing interval graphs and related classes.

Complexity of recognizing unit d-interval graphs

Roadmap

(1) We will first prove that a more general version of the problem, Colored unit 2-INTERVAL recognition, is NP-hard.
(2) Then, we will reduce Colored unit 2-Interval recognition to the recognition of unit 2-interval graphs.
(3) Finally, we will obtain the hardness for unit d-interval graphs.

Colored unit 2-interval recognition

Colored unit 2-Interval recognition

 Input: A graph $G=(V, E)$ and a coloring $\gamma: V \rightarrow\{$ white, black $\}$.Task: Decide whether G has an interval representation where:

- each white vertex is represented by a unit 2-interval,
- each black vertex is represented by a unit 1-interval.

We refer to this representation as a colored unit 2-interval representation.

Figure 9: A C_{4} with the given coloring is a colored unit 2-interval graph.

SAT \leq_{P} Colored unit 2-interval Recognition

Complexity of recognizing colored unit 2-interval graphs

Theorem

COLORED UNIT 2-INTERVAL GRAPH RECOGNITION is NP-complete.

We reduce from SATISFIABILITY restricted to CNF-formulae such that:

- Every clause contains either 3 literals (3-clause) or 2 literals (2-clause).
- Each variable occurs exactly in three clauses, once positive in a 3-clause, once positive in a 2-clause and once negative in a 2-clause.

Example:
$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3} \wedge \neg x_{1}\right) \wedge\left(x_{2} \wedge \neg x_{3}\right)$

Reduction

Let Φ be a formula. For every variable x_{i}, we introduce the following variable gadget:

Figure 10: Variable gadget corresponding to a variable x_{i}.

Reduction

True

Figure 11: Representation of the variable gadget associated to the true value and the false value, respectively.

Reduction

For every 3-clause $C_{\alpha}=\left(x_{i} \vee x_{j} \vee x_{k}\right)$, we introduce the following clause gadget:

Figure 12: Clause gadget associated to a 3-clause $C_{\alpha}=\left(x_{i} \vee x_{j} \vee x_{k}\right)$.

Reduction

If Φ is satisfiable, then there exists a colored unit 2-interval representation of the constructed graph.

Figure 13: Representation of a 3-clause ($x_{i} \vee x_{j} \vee x_{k}$), where x_{i} and x_{k} are set to false and x_{j} is set to true.
Φ is satisfiable if and only if there exists a colored unit 2-interval representation of the graph. Thus, Colored unit 2-Interval graph recognition is NP-complete.

Colored unit 2-Interval graph recognition $\leq p$ Unit 2-Interval graph

 RECOGNITION
Complexity of recognizing unit 2-interval graphs

Theorem

Recognizing unit 2-interval graphs is NP-complete.

Figure 14: Gadget used to replace every black vertex v of G.

Complexity of recognizing unit d-interval graphs

Theorem

Recognizing depth r unit d-interval graphs is NP-complete for every $r \geq 4$ and every $d \geq 2$.

- Note that recognition problems are very different from optimization problems, and recognizing a class can be easier than recognizing a subclass of it.

Corollary

Unless the ETH fails, UNIT d-INTERVAL GRAPH RECOGNITION does not admit an algorithm with running time $2^{o(|V|+|E|)}$.

Open questions

Open questions

- We have obtained a lower bound for the running time of an algorithm for recognizing unit 2-interval graphs. However, the brute-force algorithm runs in $\mathcal{O}\left(2^{n^{2}}\right)$. Is it possible to reduce this gap?
- We have shown that recognizing depth 4 unit d-interval graphs is NP-complete and it is known that the recognition of depth 2 unit d-interval graphs is polynomial-time solvable [Jiang, 2013], what happens for depth 3 unit d-interval graphs?

Open questions

- We have obtained a lower bound for the running time of an algorithm for recognizing unit 2-interval graphs. However, the brute-force algorithm runs in $\mathcal{O}\left(2^{n^{2}}\right)$. Is it possible to reduce this gap?
- We have shown that recognizing depth 4 unit d-interval graphs is NP-complete and it is known that the recognition of depth 2 unit d-interval graphs is polynomial-time solvable [Jiang, 2013], what happens for depth 3 unit d-interval graphs?

Thank you

