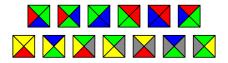
The structure of quasi-transitive graphs avoiding a minor with applications to the Domino Conjecture.

Louis Esperet*, Ugo Giocanti*, Clément Legrand-Duchesne*

*Université Grenoble Alpes, Laboratoire G-SCOP, France *Université de Bordeaux, LaBRI, France

JGA 2023

Wang tiling problem



Wang tiling problem

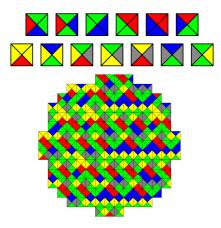
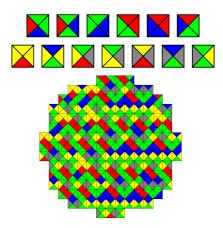


Image source:

https://commons.wikimedia.org/w/index.php?curid=12128873

Wang tiling problem



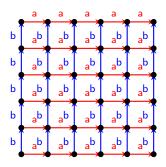
Theorem (Berger, '66)

The Wang tiling problem is undecidable.

$\Gamma = \langle S \rangle$: finitely generated group. Assume $S = S^{-1}$.

 $\Gamma = \langle S \rangle$: finitely generated group. Assume $S = S^{-1}$. Cay (Γ, S) is the labelled graph with vertex set Γ and adjacencies xy for every $x, y \in \Gamma$ such that $y \in x \cdot S$.

Cay(\mathbb{Z}^2 , S), with $S = \{(1,0), (-1,0), (0,1), (0,-1)\}$



```
Fix (\Gamma, S).
Pattern of Cay(\Gamma, S): coloring p of \{1_{\Gamma}, s\} for some s \in S.
p appears in a vertex-coloring of Cay(\Gamma, S) if there is a pair (w, w \cdot s) colored p.
```

Fix (Γ, S) .

Pattern of Cay(Γ , S): coloring p of $\{1_{\Gamma}, s\}$ for some $s \in S$.

p appears in a vertex-coloring of $Cay(\Gamma, S)$ if there is a pair $(w, w \cdot s)$ colored *p*.

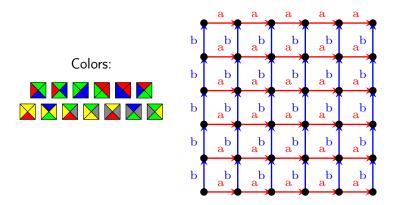
Domino problem on (Γ, S) :

Input: a finite alphabet Σ and a finite set $\mathcal{F} = \{p_1, \dots, p_t\}$ of forbidden patterns.

Question: Is there a coloring $c : V(G) \to \Sigma$ avoiding \mathcal{F} ?

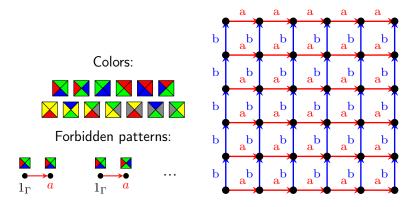
Domino Problem on groups

Fix (Γ, S) . Pattern of Cay (Γ, S) : coloring p of $\{1_{\Gamma}, s\}$ for some $s \in S$. p appears in a vertex-coloring of Cay (Γ, S) if there is a pair $(w, w \cdot s)$ colored p.

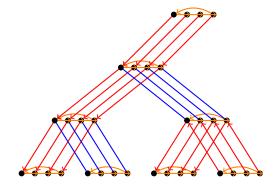


Domino Problem on groups

Fix (Γ, S) . Pattern of Cay (Γ, S) : coloring p of $\{1_{\Gamma}, s\}$ for some $s \in S$. p appears in a vertex-coloring of Cay (Γ, S) if there is a pair $(w, w \cdot s)$ colored p.

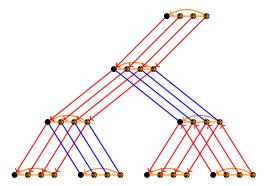


 Γ is virtually-free if one/all its Cayley graphs have bounded treewidth.



Virtually-free groups

 Γ is virtually-free if one/all its Cayley graphs have bounded treewidth.



Conjecture (Ballier-Stein 2018)

The domino problem on Γ is decidable if and only if Γ is virtually-free.

A group is planar if one of its Cayley graphs is planar. A group is minor excluded if one of its Cayley graphs excludes a (countable) minor. A group is planar if one of its Cayley graphs is planar.

A group is minor excluded if one of its Cayley graphs excludes a (countable) minor.

<u>Remark:</u> G minor-excluded \Leftrightarrow G is K_{∞} -minor free.

Decidable on virtually-free groups;
[Berger 1966] Undecidable on Z²;
[ABM 2019] Undecidable on fundamental groups of surfaces.

Decidable on virtually-free groups;

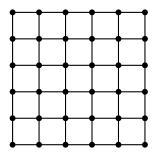
[Berger 1966] Undecidable on \mathbb{Z}^2 ;

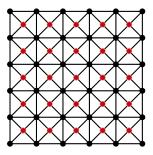
[ABM 2019] Undecidable on fundamental groups of surfaces.

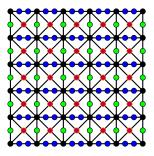
Theorem

The Domino conjecture is true for planar groups and more generally for minor-excluding groups.

G: (connected) graph, countable vertex set, locally finite.

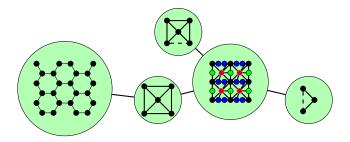






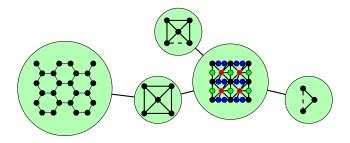
Theorem (finite/planar)

Let G be a quasi-transitive locally finite graph excluding K_{∞} as a minor. Then there is an integer k such that G admits a canonical tree-decomposition (T, \mathcal{V}) , of adhesion at most k whose torsos are either finite or quasi-transitive 3-connected planar minors of G.



Theorem (finite/planar)

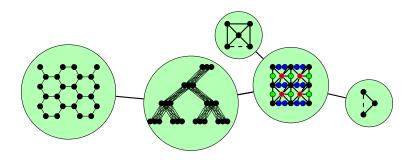
Let G be a quasi-transitive locally finite graph excluding K_{∞} as a minor. Then there is an integer k such that G admits a canonical tree-decomposition (T, \mathcal{V}) , of adhesion at most k whose torsos are either finite or quasi-transitive 3-connected planar minors of G. Moreover, E(T)has finitely many Aut(G)-orbits.



Main result

Theorem (finite treewidth/planar)

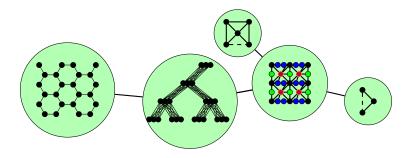
Let G be a quasi-transitive locally finite graph excluding K_{∞} as a minor. Then there is an integer k such that G admits a canonical tree-decomposition (T, \mathcal{V}) , of adhesion at most 3 whose torsos are quasi-transitive minors of G and have either treewidth at most k or are 3-connected planar.



Main result

Theorem (finite treewidth/planar)

Let G be a quasi-transitive locally finite graph excluding K_{∞} as a minor. Then there is an integer k such that G admits a canonical tree-decomposition (T, \mathcal{V}) , of adhesion at most 3 whose torsos are quasi-transitive minors of G and have either treewidth at most k or are 3-connected planar. Moreover, E(T) has finitely many Aut(G)-orbits.



Corollary

For every locally finite quasi-transitive graph G avoiding K_{∞} as a minor, there is an integer k such that G is K_k -minor-free.

Generalizes [Thomassen '92] dealing with the 4-connected case.

- Prove results on groups by working in the more general world of quasi-transitive graphs.
- Key tool: canonicity (allows to do induction in the context of tree-decompositions).

- Prove results on groups by working in the more general world of quasi-transitive graphs.
- Key tool: canonicity (allows to do induction in the context of tree-decompositions).

Questions:

- A quasi-transitive graphical reformulation of Domino's conjecture?
- If G is quasi-transitive, is there a proper colouring of G with a finite number of colours such that the colored graph G is quasi-transitive?

- Prove results on groups by working in the more general world of quasi-transitive graphs.
- Key tool: canonicity (allows to do induction in the context of tree-decompositions).

Questions:

- A quasi-transitive graphical reformulation of Domino's conjecture?
- If G is quasi-transitive, is there a proper colouring of G with a finite number of colours such that the colored graph G is quasi-transitive?

Merci!

Application: Finite presentability.

Theorem (Droms '06)

Planar groups are finitely presented.

Theorem (Droms '06)

Planar groups are finitely presented.

Corollary

Every minor-excluding finitely generated group Γ is finitely presented.

Proof based on the approach of [Hamann '18]