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The LOCAL model
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The network is also the input graph!



LOCAL running time T

Every node sees its neighborhood at
radius T and decides its output.
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Complexity differences between LOCAL and centralized

Maximum Independent Set
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H is a minor of G



State of the art for MDS with O(1) LOCAL rounds
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- Ky -minor-free graphs
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- Generalizes the outerplanar result




The algorithm



The algorithm

- Make G twinless (no vertices s.t. N[u] = N[v])
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The algorithm

- Make G twinless (no vertices s.t. N[u] = N[v])
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- Return D = {v € V(G)|#u € V(G — v), N[v] C N[u]}
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Approximation factor

D, = {v € V(G)|Au € V(G — v), N[v] C N[u]}
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Theorem
Let D a MDS of G. If G is Ky t-minor-free, then |D,| < (2t — 1)|D|.
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Part 1: approximation factor

Lemma
Let D a MDS of G. Then 3H minor of G of the form:
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Va € A,|N(a)nD| > 2



Part 2: bound |D; \ D|
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Va e A,IN(a)nD| > 2

Lemma

Let H be the previous minor. On a K, t-minor-free graph, |A| < (t —1)|D|.
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Proof 3: D, is a dominating set
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Take u st. N[v] € N[u] with N[u] maximal.
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