Locally finding small dominating sets in $\mathcal{K}_{2,t}\text{-minor-free}$ graphs

Marthe Bonamy¹ <u>Timothé Picavet</u>¹ Alexandra Wesolek²

¹LaBRI, Bordeaux

²Simon Fraser University

Distributed algorithms

Distributed view

Distributed algorithms

The LOCAL model

The LOCAL model

The LOCAL model

The network is also the input graph!

An example: 3-coloring

An example: 3-coloring

Complexity differences between LOCAL and centralized

Graph minors

H is a minor of G

- General graphs
 - No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)

- General graphs
 - No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- *H*-minor-free graphs
 - Constant factor approximation, but large factor (Kublenz, Siebertz and Vigny 2021)

- General graphs
 - No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- *H*-minor-free graphs
 - Constant factor approximation, but large factor (Kublenz, Siebertz and Vigny 2021)
- Planar graphs
 - (11 + ε)-approximation (Heydt, Kublenz, de Mendez, Siebertz, Vigny 2023)
 - Lower bound: 7 (Hilke, Lenzen and Suomela 2014)

- General graphs
 - No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- *H*-minor-free graphs
 - Constant factor approximation, but large factor (Kublenz, Siebertz and Vigny 2021)
- Planar graphs
 - (11 + ε)-approximation (Heydt, Kublenz, de Mendez, Siebertz, Vigny 2023)
 - Lower bound: 7 (Hilke, Lenzen and Suomela 2014)
- Outerplanar graphs
 - 5-approximation, tight (Bonamy, Cook, Groenland and Wesolek 2021)

- General graphs
 - No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- *H*-minor-free graphs
 - Constant factor approximation, but large factor (Kublenz, Siebertz and Vigny 2021)
- Planar graphs
 - (11 + ε)-approximation (Heydt, Kublenz, de Mendez, Siebertz, Vigny 2023)
 - Lower bound: 7 (Hilke, Lenzen and Suomela 2014)
- Outerplanar graphs
 - 5-approximation, tight (Bonamy, Cook, Groenland and Wesolek 2021)
- $K_{2,t}$ -minor-free graphs
 - (2t 1)-approximation
 - Generalizes the outerplanar result

The algorithm

• Make G twinless (no vertices s.t. N[u] = N[v])

The algorithm

• Make G twinless (no vertices s.t. N[u] = N[v])

• Return $D_2 = \{v \in V(G) | \nexists u \in V(G - v), N[v] \subseteq N[u]\}$

$$D_2 = \{ v \in V(G) | \nexists u \in V(G - v), N[v] \subseteq N[u] \}$$

Theorem

Let D a MDS of G. If G is $K_{2,t}$ -minor-free, then $|D_2| \leq (2t-1)|D|$.

Part 1: approximation factor

Lemma

Let D a MDS of G. Then $\exists H \text{ minor of } G \text{ of the form:}$

with:

$$|A| \ge \frac{1}{2}|D_2 \setminus D|$$
$$\forall a \in A, |N(a) \cap D| \ge 2$$

Part 2: bound $|D_2 \setminus D|$

with:

 $|A| \ge \frac{1}{2}|D_2 \setminus D|$ $\forall a \in A, |N(a) \cap D| \ge 2$

Lemma

Let H be the previous minor. On a $K_{2,t}$ -minor-free graph, $|A| \leq (t-1)|D|$.

Proof 3: D_2 is a dominating set

 $v \notin D_2$

Proof 3: D_2 is a dominating set

Take *u* s.t. $N[v] \subsetneq N[u]$ with N[u] maximal.

Proof 3: D_2 is a dominating set

Take *u* s.t. $N[v] \subsetneq N[u]$ with N[u] maximal.

Conclusion and perspectives

Conclusion and perspectives

(2t - 1)-approx for $K_{2,t}$ -minor-free graphs

- (2t 1)-approx for $K_{2,t}$ -minor-free graphs
- **Q** Tight? We think there is a 5-approximation on $K_{2,t}$ -minor-free graphs.

- (2t 1)-approx for $K_{2,t}$ -minor-free graphs
- **Q** Tight? We think there is a 5-approximation on $K_{2,t}$ -minor-free graphs.
- ? Open questions: can we get small approximation factors for K_{s,t} and H-minor-free graphs?

- (2t 1)-approx for $K_{2,t}$ -minor-free graphs
- **Q** Tight? We think there is a 5-approximation on $K_{2,t}$ -minor-free graphs.
- ? Open questions: can we get small approximation factors for K_{s,t} and H-minor-free graphs?

