

Reconfiguration of Graph Homomorphisms (and Topology) Joint works with (1) Moritz Mühlenthaler and Benjamin

Lévêque, (2) Moritz Mühlenthaler and Mark H. Siggers

Thomas Suzan

Université Grenoble-Alpes, G-SCOP Laboratory, Grenoble, France

November 23, 2023

Graph coloring and homomorphisms

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

H-Recoloring

Topology for Recoloring

H-Mixing

Topology for Mixing

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Graph coloring and homomorphisms

k-coloring of $G \iff$ Graph homomorphism $\alpha \colon G \to K_k$

H-Recoloring

Topology for Recoloring

H-Mixing

Topology for Mixing

Graph coloring and homomorphisms

k-coloring of $G \iff$ Graph homomorphism $\alpha \colon G \to K_k$

Definition

A homomorphism $\alpha \colon G \to H$ is a map $V(G) \to V(H)$ such that $(uv) \in E(G) \Rightarrow (\alpha(u)\alpha(v)) \in E(H)$. $\alpha(u)$ is called the *color* of u.

Topology for Mixing

Digraph homomorphism

For each arc $u \to v$ in G, $\alpha(u) \to \alpha(v)$ is an arc in H. Homomorphism $G \rightarrow H = "H-coloring"$ of G. For $u \in V(G)$, $\alpha(u) = "color"$ of u

H-Mixing

3

Topology for Mixing

reflexive graph homomorphisms

H-Mixing

Topology for Mixing

The *H*-recoloring problem

Definition

Instance: Graph *G* and two homomorphisms $\alpha, \beta \colon G \to H$. **Question:** Can we change α to β by recoloring the vertices one by one and keeping a homomorphism all along?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

H-Mixing

Topology for Mixing

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The *H*-recoloring problem

Definition

Instance: Graph *G* and two homomorphisms $\alpha, \beta \colon G \to H$. **Question:** Can we change α to β by recoloring the vertices one by one and keeping a homomorphism all along?

Topology for Mixing

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Positive results (1)

H-Recoloring for loopless H is polynomial if

H is (\$\$\chi_b\$, \$\$\chi_b\$)-free [S., M\u00fchlenthaler, L\u00e9v\u00e9que 22]
 (generalizes H is \$\$\chi_b\$-free [Wrochna 20], which generalizes H = \$\$\lowbrace{A}\$ [Cereceda et al. 11])

H-Mixing

Topology for Mixing

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Positive results (1)

H-Recoloring for loopless H is polynomial if

- H is (\$\$\chi_b\$, \$\$\chi_b\$)-free [S., M\u00fchlenthaler, L\u00e9v\u00e9que 22]
 (generalizes H is \$\$\chi_b\$-free [Wrochna 20], which generalizes H = \$\$\lowbrace{A}\$ [Cereceda et al. 11])
- *H* is a circular clique $C_{p,q}$, where $2 \le p/q < 4$ [Brewster et al. 16]

H-Mixing

Topology for Mixing

Positive results (1)

H-Recoloring for loopless H is polynomial if

- H is (\$\$\chi_b\$, \$\$\chi_b\$)-free [S., M\u00fchlenthaler, L\u00e9v\u00e9que 22]
 (generalizes H is \$\$\chi_b\$-free [Wrochna 20], which generalizes H = \$\$\lowbrace{A}\$ [Cereceda et al. 11])
- *H* is a circular clique $C_{p,q}$, where $2 \le p/q < 4$ [Brewster et al. 16]

• H is a transitive tournament [Dochtermann & Singh 21]

H-Recoloring for reflexive H is polynomial if

- *H* is (, , , ,)-free [S., Mühlenthaler, Lévêque 22] generalizes previous results:
- *H* is a (, , , ,)-free reflexive digraph cycle [Brewster et al. 21]

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

• *H* is reflexive undirected and of girth \geq 5 [Lee et al. 21]

Hardness results (3)

H-Recoloring is PSPACE-complete if

- $H = K_n, n \ge 4$ [Bonsma & Cereceda 09]
- $H = C_{p,q}$ for $p/q \ge 4$ [Brewster et al. 16]
- \bigoplus H is a wheel W_k , $k \ge 3$, $k \ne 4$ [Lee et al. 20]
- H is a $K_{2,3}$ -free quadrangulation of the 2-sphere $\neq \bigcirc$ [Lee et al. 20]

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

•
$$H = \alpha \sqrt[8]{8} \infty$$
 [Wrochna 20]

Topology for Recoloring

H-Mixing

Topology for Mixing

The topological invariant

Main topological observation

With the right assumptions on H, reconfiguration moves do not change the winding of cycles.

(日)

H-Mixing

Topology for Mixing

The topological invariant

Main topological observation

With the right assumptions on H, reconfiguration moves do not change the winding of cycles.

Main algorithmic idea for *H*-recoloring

The moves of one vertex determines the moves of all other vertices.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

H-Recoloring

Topology for Recoloring

H-Mixing

Topology for Mixing

H-Recoloring

Topology for Recoloring

H-Mixing

Topology for Mixing

H-Recoloring

Topology for Recoloring

H-Mixing

Topology for Mixing

H-Recoloring

Topology for Recoloring

H-Mixing

Topology for Mixing

H-Recoloring

Topology for Recoloring

H-Mixing

Topology for Mixing

Example for H-Recoloring

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

H-Recoloring

Topology for Recoloring

Topology for Mixing

The *H*-mixing problem

Definition Col(G, H) Vertices: Homomorphisms $G \rightarrow H$ Edges: single vertex recoloring.

Instance: A graph G. **Question:** Is Col(H) connected?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

H-Mixing is co-NP complete if:

• $H = K_3$.

Topology for Mixing

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Results (4)

H-Mixing:

- is polynomial When H is a symmetric tree.
- can still be NP-hard if H is an orientation of a tree.

H-Mixing is co-NP complete if:

• $H = K_3$.

Topology for Mixing

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Results (4)

H-Mixing:

- is polynomial When H is a symmetric tree.
- can still be NP-hard if H is an orientation of a tree.

H-Mixing is co-NP complete if:

- $H = K_3$.
- *H* is a reflexive triangle-free, non-tree symmetric graph. (Kim, Lee and Siggers 22)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Results (4)

H-Mixing:

- is polynomial When H is a symmetric tree.
- can still be NP-hard if H is an orientation of a tree.

H-Mixing is co-NP complete if:

- $H = K_3$.
- *H* is a reflexive triangle-free, non-tree symmetric graph. (Kim, Lee and Siggers 22)
- *H* is an irreflexive non tree square-free symmetric graph. (Siggers, Mühlenthaler, S. 23+). This is a particular case of a more general result for digraphs.

Results (4)

H-Mixing:

- is polynomial When H is a symmetric tree.
- can still be NP-hard if H is an orientation of a tree.

H-Mixing is co-NP complete if:

- $H = K_3$.
- *H* is a reflexive triangle-free, non-tree symmetric graph. (Kim, Lee and Siggers 22)
- *H* is an irreflexive non tree square-free symmetric graph. (Siggers, Mühlenthaler, S. 23+). This is a particular case of a more general result for digraphs.

Remark

The complexity of K_k -mixing is still unknown for $k \ge 4$.

H-Recoloring

Topology for Recoloring

Topology for Mixing ●○

Topology for *H*-mixing [KLS 22]

Key idea

If $\alpha \colon G \to H$ and $\beta \colon G \to H$ wind a cycle of G in different ways then G is not H-mixing.

Topology for Recoloring

Topology for Mixing

Topology for *H*-mixing [KLS 22]

Definition

We say that $\alpha \colon G \to H$ is *flat* if α does not wind any cycle of *G* around a cycle of *H*.

Key idea

If $\alpha \colon G \to H$ and $\beta \colon G \to H$ wind a cycle of G in different ways then G is not H-mixing.

Topology for *H*-mixing [KLS 22]

Definition

We say that $\alpha \colon G \to H$ is *flat* if α does not wind any cycle of *G* around a cycle of *H*.

Key idea

If $\alpha: G \to H$ and $\beta: G \to H$ wind a cycle of G in different ways then G is not H-mixing. In particular, if $\alpha: G \to H$ is flat and not β , then G is not H-mixing.

H-Recoloring

Topology for Recoloring

H-Mixing

Topology for Mixing

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Last (big) steps

Constructing a gadget [KLS 22]

Gadget G^a :

- There is a flat homomorphism $G^a \to H$.
- There is a non-flat homomorphism $G^a \to H$ iff $G \to K_3$.

H-Recoloring

Topology for Recoloring

H-Mixing

Topology for Mixing ○●

Last (big) steps

Constructing a gadget [KLS 22]

Gadget G^a:

- There is a flat homomorphism $G^a \to H$.
- There is a non-flat homomorphism $G^a \rightarrow H$ iff $G \rightarrow K_3$.

Adaptation of the proof

- In [KLS 22]: Underlying simplicial complex where triangles are flat (Clique complex).
- In [MSS 23+]: Realize the same topological structure as the in-neighborhood complex of an adapted gadget (and so encodes 3-coloring in the exact same way).

Thank you!