Reconfiguration of Graph Homomorphisms (and Topology)

Joint works with (1) Moritz Mühlenthaler and Benjamin Lévêque, (2) Moritz Mühlenthaler and Mark H. Siggers

Thomas Suzan

Université Grenoble-Alpes, G-SCOP Laboratory, Grenoble, France

November 23, 2023
Graph coloring and homomorphisms

A homomorphism $\alpha: G \rightarrow H$ is a map $V(G) \rightarrow V(H)$ such that $(uv) \in E(G) \Rightarrow (\alpha(u)\alpha(v)) \in E(H)$. $\alpha(u)$ is called the color of u.

![Graph Diagram](image-url)
Graph coloring and homomorphisms

\[k\text{-coloring of } G \iff \text{Graph homomorphism } \alpha: G \to K_k \]
Graph coloring and homomorphisms

k-coloring of $G \iff$ Graph homomorphism $\alpha : G \to K_k$

Definition

A homomorphism $\alpha : G \to H$ is a map $V(G) \to V(H)$ such that $(uv) \in E(G) \Rightarrow (\alpha(u)\alpha(v)) \in E(H)$. $\alpha(u)$ is called the color of u.
For each arc $u \rightarrow v$ in G, $\alpha(u) \rightarrow \alpha(v)$ is an arc in H.

Homomorphism $G \rightarrow H = "H$-coloring" of G.

For $u \in V(G)$, $\alpha(u) = "color"$ of u
reflexive graph homomorphisms

Reflexive undirected graphs

Reflexive digraphs
The H-recoloring problem

Definition

Instance: Graph G and two homomorphisms $\alpha, \beta : G \to H$.

Question: Can we change α to β by recoloring the vertices one by one and keeping a homomorphism all along?
The H-recoloring problem

Definition

Instance: Graph G and two homomorphisms $\alpha, \beta : G \rightarrow H$.

Question: Can we change α to β by recoloring the vertices one by one and keeping a homomorphism all along?
Positive results (1)

H-Recoloring for loopless H is polynomial if

- H is $\{\square, \circlearrowright\}$-free [S., Mühlenenthaler, Lévêque 22]
 (generalizes H is \circlearrowright-free [Wrochna 20], which
 generalizes $H = \triangle$ [Cereceda et al. 11])
Positive results (1)

H-Recoloring for loopless *H* is polynomial if

- *H* is \((\emptyset, \emptyset, \emptyset)\)-free [S., Mühlenenthaler, Lévêque 22] (generalizes *H* is \(\emptyset\)-free [Wrochna 20], which generalizes *H* = \(\emptyset\) [Cereceda et al. 11])
- *H* is a circular clique \(C_{p,q}\), where \(2 \leq p/q < 4\) [Brewster et al. 16]
Positive results (1)

\(H \)-Recoloring for loopless \(H \) is \textit{polynomial} if

- \(H \) is (\includegraphics{logo})-free [S., Mühlenthaler, Lévêque 22] (generalizes \(H \) is \includegraphics{logo}-free [Wrochna 20], which generalizes \(H = \includegraphics{logo} \) [Cereceda et al. 11])
- \(H \) is a circular clique \(C_{p,q} \), where \(2 \leq p/q < 4 \) [Brewster et al. 16]
- \(H \) is a transitive tournament [Dochtermann & Singh 21]
H-Recoloring for reflexive H is polynomial if

- H is $(\circ, \boxtimes, \bigtriangleup)$-free [S., Mühlenenthaler, Lévêque 22]
 generalizes previous results:
- H is a $(\circ, \boxtimes, \bigtriangleup)$-free reflexive digraph cycle [Brewster et al. 21]
- H is reflexive undirected and of girth ≥ 5 [Lee et al. 21]
Hardness results (3)

\(H\)-Recoloring is PSPACE-complete if

- \(H = K_n, n \geq 4\) [Bonsma & Cereceda 09]
- \(H = C_{p,q}\) for \(p/q \geq 4\) [Brewster et al. 16]
- \(H\) is a wheel \(W_k, k \geq 3, k \neq 4\) [Lee et al. 20]
- \(H\) is a \(K_{2,3}\)-free quadrangulation of the 2-sphere \(\neq \)
 [Lee et al. 20]
- \(H = \) [Wrochna 20]
The topological invariant

Main topological observation

With the right assumptions on H, reconfiguration moves do not change the winding of cycles.
The topological invariant

Main topological observation

With the right assumptions on \(H \), reconfiguration moves do not change the winding of cycles.

Main algorithmic idea for \(H \)-recoloring

The moves of one vertex determines the moves of all other vertices.
Example for H-Recoloring

$\beta(q) \xrightarrow{S_q} \alpha(q)$

$\beta(v) \xrightarrow{S_v} \alpha(v)$
Example for H-Recoloring

\[\alpha(q) \xrightarrow{S_q} \beta(q) \]

\[\alpha(v) \xrightarrow{S_v} \beta(v) \]

\[\alpha \quad \rightarrow \quad \beta \]
Example for H-Recoloring

\[\beta(q) \xrightarrow{S_q} \alpha(q) \]

\[\beta(v) \xrightarrow{S_v} \alpha(v) \]
Example for H-Recoloring

\[\beta(q) \xrightarrow{S_q} \alpha(q) \]

\[\beta(v) \xrightarrow{S_v} \alpha(v) \]
Example for H-Recoloring

\[
\begin{align*}
\beta(q) & \rightarrow S_q & \alpha(q) \\
\beta(v) & \rightarrow S_v & \alpha(v)
\end{align*}
\]
The H-mixing problem

Definition

Col(G, H)

- **Vertices:** Homomorphisms $G \rightarrow H$
- **Edges:** single vertex recoloring.

Instance: A graph G.

Question: Is Col(H) connected?
Remarks

H-Mixing is co-NP complete if:

- $H = K_3$.

Results (4)

H-Mixing:

- is polynomial when H is a symmetric tree.
- can still be NP-hard if H is an orientation of a tree.

H-Mixing is co-NP complete if:

- $H = K_3$.
- H is a reflexive triangle-free, non-tree symmetric graph. (Kim, Lee and Siggers 22)
- H is an irreflexive non tree square-free symmetric graph. (Siggers, Mühlenthaler, S. 23+). This is a particular case of a more general result for digraphs.
Results (4)

H-Mixing:

- is polynomial When H is a symmetric tree.
- can still be NP-hard if H is an orientation of a tree.

H-Mixing is co-NP complete if:

- $H = K_3$.
Results (4)

H-Mixing:

- is polynomial When H is a symmetric tree.
- can still be NP-hard if H is an orientation of a tree.

H-Mixing is co-NP complete if:

- $H = K_3$.
- H is a reflexive triangle-free, non-tree symmetric graph. (Kim, Lee and Siggers 22)
Results (4)

H-Mixing:
- is polynomial When H is a symmetric tree.
- can still be NP-hard if H is an orientation of a tree.

H-Mixing is co-NP complete if:
- $H = K_3$.
- H is a reflexive triangle-free, non-tree symmetric graph. (Kim, Lee and Siggers 22)
- H is an irreflexive non tree square-free symmetric graph. (Siggers, Mühlenthaler, S. 23+). This is a particular case of a more general result for digraphs.
Results (4)

H-Mixing:

- is polynomial when H is a symmetric tree.
- can still be NP-hard if H is an orientation of a tree.

H-Mixing is co-NP complete if:

- $H = K_3$.
- H is a reflexive triangle-free, non-tree symmetric graph. (Kim, Lee and Siggers 22)
- H is an irreflexive non tree square-free symmetric graph. (Siggers, Mühlenthaler, S. 23+). This is a particular case of a more general result for digraphs.

Remark

The complexity of K_k-mixing is still unknown for $k \geq 4$.
Topography for H-mixing [KLS 22]

Key idea

If $\alpha : G \rightarrow H$ and $\beta : G \rightarrow H$ wind a cycle of G in different ways then G is not H-mixing.
Definition

We say that $\alpha : G \rightarrow H$ is *flat* if α does not wind any cycle of G around a cycle of H.

Key idea

If $\alpha : G \rightarrow H$ and $\beta : G \rightarrow H$ wind a cycle of G in different ways then G is not H-mixing.
Definition

We say that $\alpha: G \to H$ is flat if α does not wind any cycle of G around a cycle of H.

Key idea

If $\alpha: G \to H$ and $\beta: G \to H$ wind a cycle of G in different ways then G is not H-mixing. In particular, if $\alpha: G \to H$ is flat and not β, then G is not H-mixing.
Constructing a gadget [KLS 22]

Gadget G^a:

- There is a flat homomorphism $G^a \to H$.
- There is a non-flat homomorphism $G^a \to H$ iff $G \to K_3$.

Adaptation of the proof

- In [KLS 22]: Underlying simplicial complex where triangles are flat (Clique complex).
- In [MSS 23+]: Realize the same topological structure as the in-neighborhood complex of an adapted gadget (and so encodes 3-coloring in the exact same way).
Last (big) steps

Constructing a gadget [KLS 22]

Gadget G^a:
- There is a flat homomorphism $G^a \to H$.
- There is a non-flat homomorphism $G^a \to H$ iff $G \to K_3$.

Adaptation of the proof
- In [KLS 22]: Underlying simplicial complex where triangles are flat (Clique complex).
- In [MSS 23+]: Realize the same topological structure as the in-neighborhood complex of an adapted gadget (and so encodes 3-coloring in the exact same way).

Thank you!