A Caro-Wei bound for induced linear forests in graphs

Gwenaël Joret <u>Robin Petit</u>

22 November 2023

Gwenaël Joret, Robin Petit

Context	Linear forests	Caterpillars	Conclusion
●000	0000	00	

- Graphs are simple, undirected, unweighted.
- For $W \subseteq V(G)$, G[W] is the subgraph *induced* by W.
- S is an independent (stable) set in G if $E(G[S]) = \emptyset$.
- A *forest* is an acyclic graph.
- A forest is *linear* if it is a union of disjoint paths.
- A *caterpillar* is a path with an arbitrary number of leaves added.

Gwenaël Joret, <u>Robin Petit</u> A Caro-Wei bound for induced linear forests in graphs

Context	Linear forests	Caterpillars	Conclusion
●000	0000	00	

- Graphs are simple, undirected, unweighted.
- For $W \subseteq V(G)$, G[W] is the subgraph *induced* by W.
- S is an independent (stable) set in G if $E(G[S]) = \emptyset$.
- A *forest* is an acyclic graph.
- A forest is *linear* if it is a union of disjoint paths.
- A *caterpillar* is a path with an arbitrary number of leaves added.

Caterpillars

Theorem 1 (Caro-Wei, 1979-1981)

Every graph G admits an independent set of size at least:

$$\sum_{v\in V(G)}\frac{1}{d(v)+1}$$

and this bound is tight.

Caterpillars

Theorem 1 (Caro-Wei, 1979-1981)

Every graph G admits an independent set of size at least:

$$\sum_{v\in V(G)}\frac{1}{d(v)+1}$$

and this bound is tight.

Kn

Caterpillars

Theorem 2 (Corollary from Alon, Kahn and Seymour, 1987)

Every graph G without isolated vertices admits an induced forest of size at least:

$$\sum_{v\in V(G)}\frac{2}{d(v)+1},$$

and this bound is tight.

Caterpillars

Theorem 2 (Corollary from Alon, Kahn and Seymour, 1987)

Every graph G without isolated vertices admits an induced forest of size at least:

$$\sum_{v\in V(G)}\frac{2}{d(v)+1},$$

and this bound is tight.

Caterpillars

Conclusion

Theorem 3 (Akbari, Amanihamedani, Mousavi, Nikpey and Sheybani, 2019)

For $d \ge 1$, every *d*-regular graph *G* admits an induced linear forest of size at least $\frac{2n}{d+1}$ and this bound is tight.

Caterpillars

Conclusion

Theorem 3 (Akbari, Amanihamedani, Mousavi, Nikpey and Sheybani, 2019)

For $d \ge 1$, every d-regular graph G admits an induced linear forest of size at least $\frac{2n}{d+1}$ and this bound is tight.

Conjecture 1 (Akbari et al., 2019)

Every graph G satisfying $\delta(G) \ge 2$ admits an induced linear forest of size at least:

$$\sum_{v\in V(G)}\frac{2}{d(v)+1}.$$

Gwenaël Joret, Robin Petit

Caterpillars

Conclusion

Theorem 3 (Akbari, Amanihamedani, Mousavi, Nikpey and Sheybani, 2019)

For $d \ge 1$, every *d*-regular graph *G* admits an induced linear forest of size at least $\frac{2n}{d+1}$ and this bound is tight.

Conjecture 1 (Akbari et al., 2019)

Every graph G satisfying $\delta(G) \ge 2$ admits an induced linear forest of size at least:

$$\sum_{v\in V(G)}\frac{2}{d(v)+1}.$$

 $3 \times f(1) + 1 \times f(3) \le 3$ but $3 + \frac{2}{4} > 3$.

Gwenaël Joret, Robin Petit

Context	Linear forests	Caterpillars	Conclusion
0000	•000	00	

We proved that conjecture:

Theorem 4

Let $f : \mathbb{N} \to [0, 1]$ defined as follows:

$$f(d) = \begin{cases} 1 & \text{if } d = 0\\ \frac{5}{6} & \text{if } d = 1\\ \frac{2}{d+1} & \text{else.} \end{cases}$$

Every graph G admits an induced linear forest of size at least $\sum_{v \in V(G)} f(d(v))$, and this bound is tight.

Context	Linear forests	Caterpillars	Conclusion
0000	•000	00	

We proved that conjecture:

Theorem 4

Let $f : \mathbb{N} \to [0, 1]$ defined as follows:

$$f(d) = \begin{cases} 1 & \text{if } d = 0\\ \frac{5}{6} & \text{if } d = 1\\ \frac{2}{d+1} & \text{else.} \end{cases}$$

Every graph G admits an induced linear forest of size at least $\sum_{v \in V(G)} f(d(v))$, and this bound is tight.

Gwenaël Joret, Robin Petit

Context 0000	Linear forests 0●00	Caterpillars 00	Conclusion
Observe that:	(1	$if \ d \leq 1$	
	$f(d) = \left\{ \frac{2}{3} \right\}$	if $d = 2$	
	lo	if $d \ge 3$	

Context 0000	Linear forests ○●○○		Caterpillars 00	Conclusion
Observe that:		,		

$$f(d) = \begin{cases} 1 & \text{if } d \le 1 \\ \frac{2}{3} & \text{if } d = 2 \\ 0 & \text{if } d \ge 3 \end{cases}$$

Gwenaël Joret, <u>Robin Petit</u>

Context 0000	Linear forests 0●00	Caterpillars 00	Conclusion
Observe that:			

$$f(d) = \begin{cases} 1 & \text{if } d \le 1 \\ \frac{2}{3} & \text{if } d = 2 \\ 0 & \text{if } d \ge 3 \end{cases}$$

A Caro-Wei bound for induced linear forests in graphs

Context 0000	Linear forests 0●00	Caterpillars 00	Conclusion
Observe that:			

$$f(d) = egin{cases} 1 & ext{if } d \leq 1 \ rac{2}{3} & ext{if } d = 2 \ 0 & ext{if } d \geq 3 \end{cases}$$

Gwenaël Joret, <u>Robin Petit</u>

Context 0000	Linear forests ○●○○	Caterpillars	Conclusion
Observe that:			

$$f(d) = \begin{cases} 1 & \text{if } d \le 1 \\ \frac{2}{3} & \text{if } d = 2 \\ 0 & \text{if } d \ge 3 \end{cases}$$

Context 0000	Linear forests 0●00	Caterpillars 00	Conclusion

Observe that:

$$f(d) = egin{cases} 1 & ext{if } d \leq 1 \ rac{2}{3} & ext{if } d = 2 \ 0 & ext{if } d \geq 3 \end{cases}$$

is also a bound that is tight.

What about $\frac{5}{6} < f(1) < 1$? We can fill the gap!

Gwenaël Joret, Robin Petit

Theorem 5

For every $\varepsilon \in [0, 1/6]$, let $f_{\varepsilon} : \mathbb{N} \to [0, 1]$ defined as follows:

$$f_{\varepsilon}(d) = egin{cases} 1 & \mbox{if } d = 0 \ 1 - arepsilon & \mbox{if } d = 1 \ rac{2}{3} & \mbox{if } d = 2 \ \min\{3arepsilon, rac{2}{d+1}\} & \mbox{if } d \geq 3. \end{cases}$$

Every graph G admits an induced linear forest of size at least $\sum_{v \in V(G)} f_{\varepsilon}(d(v))$, and this bound is tight. Furthermore:

- The optimal ε on a given graph can be computed easily.
- These functions entirely characterise the lower bounds.

C	n	t	e	t

Linear	forests
0000	

Caterpillars

Why min
$$\{3\varepsilon, \frac{2}{d+1}\}$$
?

Gwenaël Joret, <u>Robin Petit</u> A Caro-Wei bound for induced linear forests in graphs Context

Linear forests

Caterpillars

Why min
$$\{3\varepsilon, \frac{2}{d+1}\}$$
?

Start with $G = K_n$ $(n \ge 1)$. Then replace each original vertex from the clique by a $K_{1,3}$. Context

Linear forests

Caterpillars

Start with $G = K_n$ $(n \ge 1)$. Then replace each original vertex from the clique by a $K_{1,3}$.

 $3 \times n \times f(1) + n \times f(n+2) \le 3 \times n.$ $n \times f(n+2) \le 3 \times n \times \varepsilon$ $f(n+2) \le 3 \times \varepsilon$

Gwenaël Joret, <u>Robin Petit</u> A Caro-Wei bound for induced linear forests in graphs

Caterpillars ●0

Theorem 2 (Alon, Kahn and Seymour, 1987)

Every graph G without isolated vertices admits an induced forest of size at least:

$$\sum_{v\in V(G)}\frac{2}{d(v)+1},$$

and this bound is tight.

Theorem 6

Every graph G without isolated vertices admits an induced forest of caterpillars of size at least:

$$\sum_{v\in V(G)}\frac{2}{d(v)+1},$$

and this bound is tight.

Gwenaël Joret, Robin Petit

Context	Linear forests	Caterpillars	Conclusion
0000	0000	○●	

A linear forest is nothing but a caterpillar of max degree at most 2. What "about at most k"?

Context	Linear forests	Caterpillars	Conclusion
0000	0000	○●	

A linear forest is nothing but a caterpillar of max degree at most 2. What "about at most k"?

Theorem 7

For every $k \ge 2$ and $\varepsilon \in [0, 2/(k+1)(k+2)]$, let $f_{k,\varepsilon} : \mathbb{N} \to [0, 1]$ defined as follows:

$$f_{k,\varepsilon}(d) = \begin{cases} 1 & \text{if } d = 0\\ 1 - \varepsilon & \text{if } d = 1\\ \frac{2}{d+1} & \text{if } 2 \le d \le k\\ \min\{(k+1)\varepsilon, \frac{2}{d+1}\} & \text{if } d \ge k+1. \end{cases}$$

Every graph G admits an induced forest of caterpillars of degree at most k of size at least $\sum_{v \in V(G)} f_{k,\varepsilon}(d(v))$, and this bound is tight. Again, the optimal ε can be easily computed, and these functions entirely characterise the lower bounds.

- **1** Caro-Wei for independent sets (1979-1981).
- 2 Alon et al. for induced forests (1987).
- 3 Extension to caterpillars with the same bound.
- 4 Akbari *et al.* for induced *linear* forests in *regular* graphs (2019).
- 5 Characterisation of all the lower bounds for induced linear forests in all graphs.
- 6 Generalisation of this characterisation to forests of caterpillars of bounded degree.

Thanks for your attention! Any questions?

Gwenaël Joret, <u>Robin Petit</u> A Caro-Wei bound for induced linear forests in graphs Choice of an optimal ε in Theorem 5:

• Note N_k the number of vertices with d(v) = k.

If
$$3\sum_{d=3}^{\Delta(G)} N_d < N_1$$
, define $\varepsilon^*(G) = 0$.

• Else, let $D^*(G)$ be the smallest integer D such that $3\sum_{d=3}^{D} N_d \ge N_1$, and define $\varepsilon^*(G) = \frac{2}{3(D^*(G)+1)}$.

Then for every $\varepsilon \in [0, 1/6]$:

$$\sum_{v\in V(G)} f_{arepsilon^*(G)}(d(v)) \geq \sum_{v\in V(G)} f_{arepsilon}(d(v)).$$

Gwenaël Joret, Robin Petit

Proof of Theorem 5: by the following Theorem.

Theorem 8

For a given graph G, define $C_G : V(G) \rightarrow [0,1]$ as follows:

$$C_G(v) = \begin{cases} 1 & \text{if } d(v) = 0 \text{ or } d(v) = 1 \text{ and } d(w) \le 2\\ 1 - \frac{2}{3(d(w)+1)} & \text{if } d(v) = 1 \text{ and } d(w) \ge 3\\ \frac{2}{d(v)+1} & \text{if } d(v) \ge 2. \end{cases}$$

Every graph G admits an induced linear forest of size at least $\sum_{v \in V(G)} C_G(v)$.

Gwenaël Joret, Robin Petit

Idea of proof of Theorem 8:

- **1** Remove every vertex with \geq 3 leaves.
- **2** Partition V(G) based on the number of leaves.
- **3** Remove (temporarily) the leaves.
- 4 Find a specific induced linear forest in what is left (bound on the degree).
- 5 Put back the leaves.
- 6 Tadaaaa.

Step 4 is the "hard one": the ABC lemma.

Theorem 9

For every $\varepsilon \in [0, 1/6]$, let $f_{\varepsilon} : \mathbb{N} \to [0, 1]$ defined as follows:

$$f(d) = \begin{cases} 1 & \text{if } d = 0\\ 1 - \varepsilon & \text{if } d = 1\\ \min\{\frac{3}{5}, \frac{1}{2} + \varepsilon\} & \text{if } d = 2\\ \min\{\frac{2}{d+1}, \frac{1}{d} + \varepsilon\} & \text{if } d \ge 3. \end{cases}$$

Every graph G admits an induced forest of stars of size at least $\sum_{v \in V(G)} f_{\varepsilon}(d(v))$, and this bound is tight. These functions entirely characterise the lower bounds.

A Caro-Wei bound for induced linear forests in graphs

Theorem 10 (Alon, Kahn and Seymour, 1987)

For every integer k, every graph G admits an induced subgraph $H \le G$ that is k-degenerate of size at least:

$$\sum_{v\in V(G)}\min\left\{1,\frac{k+1}{d(v)+1}\right\},\,$$

and this bound is tight.

Where a graph H is k-degenerate if every subgraph of H has a vertex of degree at most k.