Skipless Chain Decompositions & Improved Poset Saturation Bounds

Paul Bastide Carla Groenland Maria-Romina Ivan Hugo Jacob Tom Johnston LaBRI, TU Delft TU Delft Cambridge ENS Paris-Saclay University of Bristol The Boolean lattice of dimension *n*:

- elements: $2^{[n]} = \mathcal{P}(\{1, ..., n\})$
- relation: \subseteq

The Boolean lattice of dimension n:

- elements: $2^{[n]} = \mathcal{P}(\{1, ..., n\})$
- relation: \subseteq

A chain is a set system where every pair of elements is comparable. An antichain is a set system where every pair of elements is incomparable.

The Boolean lattice of dimension n:

- elements: $2^{[n]} = \mathcal{P}(\{1, ..., n\})$
- relation: \subseteq

A chain is a set system where every pair of elements is comparable. An antichain is a set system where every pair of elements is incomparable.

A chain $C = \{C_1 \subsetneq C_2 \subsetneq \ldots \subsetneq C_k\} \subseteq P$ is skipless in P if for all $i \in [k-1]$, there is no $X \in P$ with $C_i \subsetneq X \subsetneq C_{i+1}$.

A chain $C = \{C_1 \subsetneq C_2 \subsetneq \ldots \subsetneq C_k\} \subseteq P$ is skipless in P if for all $i \in [k-1]$, there is no $X \in P$ with $C_i \subsetneq X \subsetneq C_{i+1}$.

Theorem (Dilworth 1950)

For a family poset \mathcal{P} , the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P} .

Theorem (Dilworth 1950)

For a family poset \mathcal{P} , the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P} .

Can you ask for Dilworth theorem to use disjoint skipless chains?

Theorem (Dilworth 1950)

For a family poset \mathcal{P} , the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P} .

Can you ask for Dilworth theorem to use disjoint skipless chains? NO

Theorem (Dilworth 1950)

For a family poset \mathcal{P} , the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P} .

Can you ask for Dilworth theorem to use disjoint **skipless** chains? NO What if we view this poset embedded in the Boolean lattice...

Theorem (Dilworth 1950)

For a family poset \mathcal{P} , the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P} .

Can you ask for Dilworth theorem to use disjoint **skipless** chains? NO What if we view this poset embedded in the Boolean lattice...

Theorem (Dilworth 1950)

For a family poset \mathcal{P} , the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P} .

Can you ask for Dilworth theorem to use disjoint **skipless** chains? NO What if we view this poset embedded in the Boolean lattice...

Theorem (Dilworth 1950)

For a family poset \mathcal{P} , the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P} .

Can you ask for Dilworth theorem to use disjoint **skipless** chains? NO What if we view this poset embedded in the Boolean lattice...

True for every poset, and every way to embed it.

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any subposet \mathcal{P} of $2^{[n]}$ with largest antichain of size k can be **covered** by a family of k **disjoint skipless** chains in $2^{[n]}$.

"Any family of k chains in $2^{[n]}$ can be **covered** by a family of k **disjoint skipless** chains in $2^{[n]}$."

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+] Any subposet \mathcal{P} of $2^{[n]}$ with largest antichain of size k can be **covered** by a family of k **disjoint skipless** chains in $2^{[n]}$.

"Any family of k chains in $2^{[n]}$ can be **covered** by a family of k **disjoint skipless** chains in $2^{[n]}$."

We generalise a result of Lehman and Ron (2001) who proved the special case where all chains of the family are of size 2 and all top (resp. bottom) elements of the chain have the same size.

We generalise a result from Duffus, Howard and Leader (2019) who proved the special case where the family is $convex^1$.

 $^{{}^{1}\}mathcal{F} \subseteq 2^{[n]}$ is convex if for all $X, Z \in \mathcal{F}$ and $X \subset Y \subset Z, Y \in \mathcal{F}$.

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+] Any family of k chains in $2^{[n]}$ can be **covered** by a family of k **disjoint skipless** chains in $2^{[n]}$.

Sketch of the sketch of the proof

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of k chains in $2^{[n]}$ can be **covered** by a family of k **disjoint skipless** chains in $2^{[n]}$.

$\mathcal{F} \subseteq 2^{[n]}$, is *k*-saturated if:

- \mathcal{F} has no antichain of size k;
- $\mathcal{F} \cup \{x\}$ has an antichain of size k for any $x \in 2^{[n]} \setminus \mathcal{F}$.

 $sat^*(n, k) = minimum |\mathcal{F}|$ over all k-saturated families \mathcal{F} in $2^{[n]}$.

$\mathcal{F} \subseteq 2^{[n]}$, is *k*-saturated if:

- \mathcal{F} has no antichain of size k;
- $\mathcal{F} \cup \{x\}$ has an antichain of size k for any $x \in 2^{[n]} \setminus \mathcal{F}$.

 $sat^*(n, k) = minimum |\mathcal{F}|$ over all k-saturated families \mathcal{F} in $2^{[n]}$.

Red sets form an 2-saturated family for the hypercube $2^{[3]}$: sat*(3,2) \leq 4. Can we extend this construction to *k*-saturated ?

Construction: $sat^{*}(n, k) \leq (n - 1)(k - 1) + 2$.

Construction: $sat^{*}(n, k) \leq (n - 1)(k - 1) + 2$.

Ferrara, Kay, Kramer, Martin, Reiniger, Smith and Sullivan (2017).

Conjecture (FKKMRSS): $\forall k \geq 2$, sat* $(n, k) \sim n(k-1)$ as $n \to \infty$.

Construction: $sat^{*}(n, k) \leq (n - 1)(k - 1) + 2$.

Ferrara, Kay, Kramer, Martin, Reiniger, Smith and Sullivan (2017). Danković and Ivan (2022+)

Conjecture (FKKMRSS): $\forall k \geq 2$, sat* $(n, k) \sim n(k-1)$ as $n \to \infty$.

Conjecture (Danković and Ivan): $\forall k \geq 2$, sat* $(n, k) \geq n(k-1) - C_k$.

Construction: $sat^{*}(n, k) \leq (n - 1)(k - 1) + 2$.

Ferrara, Kay, Kramer, Martin, Reiniger, Smith and Sullivan (2017). Danković and Ivan (2022+)

Conjecture (FKKMRSS): $\forall k \geq 2$, sat* $(n, k) \sim n(k-1)$ as $n \to \infty$.

Conjecture (Danković and Ivan): $\forall k \geq 2$, sat* $(n, k) \geq n(k-1) - C_k$.

There is a half page proof of both conjecture with our decomposition lemma!

 $\nu(\mathcal{F}) \rightarrow$ the size of the maximum matching from \mathcal{F} to its shadow $\partial \mathcal{F}$. $\mathcal{C}(m, t) \rightarrow$ initial segment of colex of size *m* on layer *t*.

Define the sequence $c_{\lfloor \ell/2 \rfloor} = k - 1$, and for $0 \le t < \lfloor \ell/2 \rfloor$, let $c_t = \nu \left(\mathcal{C}(c_{t+1}, t+1) \right)$.

B, Groenland, Jacob and Johnston (2023+) For $n \ge 2 \log(k) + 1$,

$$\operatorname{sat}^*(n,k) = 2\sum_{t=0}^{\lfloor \ell/2
floor} c_t + (k-1)(n-1-2\lfloor \ell/2
floor).$$

The lower bound still holds for $n \ge \ell$ (and sat^{*} $(n, k) = 2^n$ for $n < \ell$).

Definition

- $\mathcal{F} \subseteq 2^{[n]}$ a set system is \mathcal{P} -saturated if:
 - \mathcal{F} has no induced copy of \mathcal{P} ;
 - $\mathcal{F} \cup \{x\}$ has an induced copy of \mathcal{P} for any $x \in 2^{[n]} \setminus \mathcal{P}$.

Definition

- $\mathcal{F} \subseteq 2^{[n]}$ a set system is \mathcal{P} -saturated if:
 - \mathcal{F} has no induced copy of \mathcal{P} ;
 - $\mathcal{F} \cup \{x\}$ has an induced copy of \mathcal{P} for any $x \in 2^{[n]} \setminus \mathcal{P}$.

Theorem (Morrison, Noel and Scott 2014;

 \leq sat* $(n, C_k) \leq 2^{0.98k}$

Definition

- $\mathcal{F} \subseteq 2^{[n]}$ a set system is \mathcal{P} -saturated if:
 - \mathcal{F} has no induced copy of \mathcal{P} ;
 - $\mathcal{F} \cup \{x\}$ has an induced copy of \mathcal{P} for any $x \in 2^{[n]} \setminus \mathcal{P}$.

Theorem (Morrison, Noel and Scott 2014; Gerbner, Keszegh, Lemons, Palmer, Pálvölgyi, Patkós 2011)

 $2^{(k-3)/2} \leq \mathsf{sat}^*(n, C_k) \leq 2^{0.98k}$

Table

$\mathbf{poset} \ P$	$\mathbf{sat}(n, P)$	$\mathbf{sat}^*(n, P)$	
C_2 , chain	= 1	= 1	
A_2 , antichain	= 1	= n + 1	
C_3 , chain	= 2	=2	
$C_2 + C_1$, chain and single	= 2	= 4	case analysis
\vee fork (or \wedge)	= 2	= n + 1	[F7]
A_3 , antichain	= 2	= 3n - 1	[F7]
C_4 , chain	= 4	= 4	[G6]
\vee_3 , fork with three times	= 3	$\geq \log_2 n$	[F7]
\diamond , diamond	= 3	$\geq \sqrt{n}$	[MSW]
		$\leq n+1$	[F7]
\diamond^- , diamond minus an edge	= 3	= 4	case analysis
\bowtie , butterfly	= 4	$\geq n+1$	[I]
		$\leq 6n - 10$	[Thm 3.16]
Y	= 3	$\geq \log_2 n$	[Thm. <u>3.6</u>]
N	= 3	$\geq \sqrt{n}$	[I]
		$\leq 2n$	[F7]
$2C_2$	= 3	$\geq n+2$	[Thm. 3.11]
		$\leq 2n$	[Prop. <u>3.9</u>]

Figure 1: Table from Keszegh, Lemons, Martin, Pálvölgyi and Patkós 2022

Table

$C_3 + C_1$, chain and single	= 3	≤ 8	[Prop. 3.18]
$\vee +1$, fork and single	= 3	$\geq \log_2 n$	[F7]
$C_2 + A_2$	= 3	≤ 8	[Prop. 3.18]
A_4 , antichain	= 3	$\geq 3n-1$	[F7]
		$\leq 4n+2$	[F7]
C_5 , chain	= 8	= 8	[G6]+[MNS]
C_6 , chain	= 16	= 16	[G6]+[MNS]
C_k , chain $(k \ge 7)$	$\geq 2^{(k-3)/2}$	$\geq 2^{(k-3)/2}$	[G6]
	$\leq 2^{0.98k}$	$\leq 2^{0.98k}$	[MNS]
A_k , antichain	= k - 1	$\geq \left(1 - rac{1}{\log_2 k} ight) rac{k}{\log_2 k} n$	[MSW]
		$\leq kn - k - \frac{1}{2}\log_2 k + O(1)$	[F7]
$3C_2$	= 5	≤ 14	[Prop. <u>3.13</u>]
$5C_2$	= 9	≤ 42	[Prop. 3.18]
$7C_2$	= 13	≤ 60	[Prop. 3.18]
any poset on k elements	$\leq 2^{k-2}$		[Thm. 1.1]
UCTP (def. in Section 3.2)	O(1)	$\geq \log_2 n$	[F7]
UCTP with top chain	O(1)	$\geq \log_2 n$	[Thm. 3.6]
chain + shallower	O(1)	O(1)	[Thm. 3.8]

Figure 2: Table from Keszegh, Lemons, Martin, Pálvölgyi and Patkós 2022

Very recently, a general lower bound has been shown.

Theorem (Freschi, Piga, Sharifzadeh and Treglown 2023)

For any poset P either sat* $(n, P) \ge 2\sqrt{n} - 2$ or sat* $(n, P) = O_P(1)$.

Very recently, a general lower bound has been shown.

Theorem (Freschi, Piga, Sharifzadeh and Treglown 2023)

For any poset P either sat* $(n, P) \ge 2\sqrt{n} - 2$ or sat* $(n, P) = O_P(1)$.

What about a general upper bound? Can we hope to have sat* $(n, P) \leq 2^{\sqrt{n}}$ for every poset?

Very recently, a general lower bound has been shown.

Theorem (Freschi, Piga, Sharifzadeh and Treglown 2023) For any poset P either sat* $(n, P) \ge 2\sqrt{n} - 2$ or sat* $(n, P) = O_P(1)$.

What about a general upper bound? Can we hope to have sat* $(n, P) \leq 2^{\sqrt{n}}$ for every poset?

Theorem (B., Groenland, Ivan, Johnston, 2023+)

For any poset P, sat* $(n, P) \leq n^{|P|^2}$.

For every poset \mathcal{P} , either sat* $(n, \mathcal{P}) = O_{\mathcal{P}}(1)$ or sat* $(n, \mathcal{P}) = \Theta_{\mathcal{P}}(n)$.

For every poset \mathcal{P} , either sat* $(n, \mathcal{P}) = O_{\mathcal{P}}(1)$ or sat* $(n, \mathcal{P}) = \Theta_{\mathcal{P}}(n)$.

For every poset \mathcal{P} , either sat* $(n, \mathcal{P}) = O_{\mathcal{P}}(1)$ or sat* $(n, \mathcal{P}) = \Theta_{\mathcal{P}}(n)$.

For every poset \mathcal{P} , either sat* $(n, \mathcal{P}) = O_{\mathcal{P}}(1)$ or sat* $(n, \mathcal{P}) = \Theta_{\mathcal{P}}(n)$.

Thank you!

Table

$\mathbf{poset}\ P$	$\mathbf{sat}(n, P)$	$\mathbf{sat}^*(n, P)$	
C_2 , chain	= 1	= 1	
A_2 , antichain	= 1	= n + 1	
C_3 , chain	= 2	= 2	
$C_2 + C_1$, chain and single	= 2	= 4	case analysis
\vee fork (or \wedge)	= 2	= n + 1	[F7]
A_3 , antichain	= 2	= 3n - 1	[F7]
C_4 , chain	= 4	= 4	[G6]
\vee_3 , fork with three times	= 3	$\geq \log_2 n$	[F7]
\diamond , diamond	= 3	$\geq \sqrt{n}$	[MSW]
		$\leq n+1$	[F7]
\diamond^- , diamond minus an edge	= 3	= 4	case analysis
\bowtie , butterfly	= 4	$\geq n+1$	[I]
		$\leq 6n - 10$	[Thm 3.16]
Y	= 3	$\geq \log_2 n$	[Thm. 3.6]
N	= 3	$\geq \sqrt{n}$	[I]
		$\leq 2n$	[F7]
$2C_2$	= 3	$\geq n+2$	[Thm. 3.11]
		$\leq 2n$	[Prop. 3.9]

Figure 3: Table from [?]

Table

$C_3 + C_1$, chain and single	= 3	≤ 8	[Prop. 3.18]
$\vee +1$, fork and single	= 3	$\geq \log_2 n$	[F7]
$C_2 + A_2$	= 3	≤ 8	[Prop. 3.18]
A_4 , antichain	= 3	$\geq 3n-1$	[F7]
		$\leq 4n+2$	[F7]
C_5 , chain	= 8	= 8	[G6]+[MNS]
C_6 , chain	= 16	= 16	[G6]+[MNS]
C_k , chain $(k \ge 7)$	$\geq 2^{(k-3)/2}$	$\geq 2^{(k-3)/2}$	[G6]
	$\leq 2^{0.98k}$	$\leq 2^{0.98k}$	[MNS]
A_k , antichain	= k - 1	$\geq \left(1 - rac{1}{\log_2 k} ight) rac{k}{\log_2 k} n$	[MSW]
		$\leq kn - k - \frac{1}{2}\log_2 k + O(1)$	[F7]
$3C_2$	= 5	≤ 14	[Prop. 3.13]
$5C_2$	= 9	≤ 42	[Prop. 3.18]
$7C_2$	= 13	≤ 60	[Prop. 3.18]
any poset on k elements	$\leq 2^{k-2}$	—	[Thm. 1.1]
UCTP (def. in Section 3.2)	O(1)	$\geq \log_2 n$	[F7]
UCTP with top chain	O(1)	$\geq \log_2 n$	[Thm. 3.6]
chain + shallower	O(1)	<i>O</i> (1)	[Thm. 3.8]

Figure 4: Table from [?]