Skipless Chain Decompositions \& Improved Poset Saturation Bounds

Paul Bastide
Carla Groenland
Maria-Romina Ivan
Hugo Jacob
Tom Johnston

LaBRI, TU Delft
TU Delft
Cambridge
ENS Paris-Saclay
University of Bristol

Boolean lattice

The Boolean lattice of dimension n :

- elements: $2^{[n]}=\mathcal{P}(\{1, \ldots, n\})$
- relation: \subseteq

Boolean lattice

The Boolean lattice of dimension n :

- elements: $2^{[n]}=\mathcal{P}(\{1, \ldots, n\})$
- relation: \subseteq

A chain is a set system where every pair of elements is comparable.
An antichain is a set system where every pair of elements is incomparable.

Boolean lattice

The Boolean lattice of dimension n :

- elements: $2^{[n]}=\mathcal{P}(\{1, \ldots, n\})$
- relation: \subseteq

A chain is a set system where every pair of elements is comparable.
An antichain is a set system where every pair of elements is incomparable.

Boolean lattice

A chain $C=\left\{C_{1} \subsetneq C_{2} \subsetneq \ldots \subsetneq C_{k}\right\} \subseteq P$ is skipless in P if for all $i \in[k-1]$, there is no $X \in P$ with $C_{i} \subsetneq X \subsetneq C_{i+1}$.

Boolean lattice

A chain $C=\left\{C_{1} \subsetneq C_{2} \subsetneq \ldots \subsetneq C_{k}\right\} \subseteq P$ is skipless in P if for all $i \in[k-1]$, there is no $X \in P$ with $C_{i} \subsetneq X \subsetneq C_{i+1}$.

Chains in the hypercube

Theorem (Dilworth 1950)
For a family poset \mathcal{P}, the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P}.

Chains in the hypercube

Theorem (Dilworth 1950)
For a family poset \mathcal{P}, the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P}.

Can you ask for Dilworth theorem to use disjoint skipless chains?

Chains in the hypercube

Theorem (Dilworth 1950)
For a family poset \mathcal{P}, the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P}.

Can you ask for Dilworth theorem to use disjoint skipless chains? NO

Chains in the hypercube

Theorem (Dilworth 1950)
For a family poset \mathcal{P}, the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P}.

Can you ask for Dilworth theorem to use disjoint skipless chains? NO What if we view this poset embedded in the Boolean lattice...

Chains in the hypercube

Theorem (Dilworth 1950)
For a family poset \mathcal{P}, the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P}.

Can you ask for Dilworth theorem to use disjoint skipless chains? NO What if we view this poset embedded in the Boolean lattice...

Chains in the hypercube

Theorem (Dilworth 1950)
For a family poset \mathcal{P}, the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P}.

Can you ask for Dilworth theorem to use disjoint skipless chains? NO What if we view this poset embedded in the Boolean lattice...

Chains in the hypercube

Theorem (Dilworth 1950)
For a family poset \mathcal{P}, the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P}.

Can you ask for Dilworth theorem to use disjoint skipless chains? NO What if we view this poset embedded in the Boolean lattice...

True for every poset, and every way to embed it.

Cover chains with skipless chains

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+]
Any subposet \mathcal{P} of $2^{[n]}$ with largest antichain of size k can be covered by a family of k disjoint skipless chains in $2^{[n]}$.
"Any family of k chains in $2^{[n]}$ can be covered by a family of k disjoint skipless chains in $2^{[n]}$."

Cover chains with skipless chains

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+]
Any subposet \mathcal{P} of $2{ }^{[n]}$ with largest antichain of size k can be covered by a family of k disjoint skipless chains in $2^{[n]}$.
"Any family of k chains in $2^{[n]}$ can be covered by a family of k disjoint skipless chains in $2{ }^{[n]}$."
We generalise a result of Lehman and Ron (2001) who proved the special case where all chains of the family are of size 2 and all top (resp. bottom) elements of the chain have the same size. We generalise a result from Duffus, Howard and Leader (2019) who proved the special case where the family is convex ${ }^{1}$.

[^0]
Sketch of the sketch of the proof

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+] Any family of k chains in $2^{[n]}$ can be covered by a family of k disjoint skipless chains in $2^{[n]}$.

Sketch of the sketch of the proof

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+] Any family of k chains in $2^{[n]}$ can be covered by a family of k disjoint skipless chains in $2^{[n]}$.

Antichain saturation

Antichain saturation

$\mathcal{F} \subseteq 2^{[n]}$, is k-saturated if:

- \mathcal{F} has no antichain of size k;
- $\mathcal{F} \cup\{x\}$ has an antichain of size k for any $x \in 2^{[n]} \backslash \mathcal{F}$.
$\operatorname{sat}^{*}(n, k)=\operatorname{minimum}|\mathcal{F}|$ over all k-saturated families \mathcal{F} in $2^{[n]}$.

Antichain saturation

$\mathcal{F} \subseteq 2^{[n]}$, is k-saturated if:

- \mathcal{F} has no antichain of size k;
- $\mathcal{F} \cup\{x\}$ has an antichain of size k for any $x \in 2^{[n]} \backslash \mathcal{F}$.
$\operatorname{sat}^{*}(n, k)=$ minimum $|\mathcal{F}|$ over all k-saturated families \mathcal{F} in $2^{[n]}$.

Red sets form an 2-saturated family for the hypercube $2^{[3]}$: sat $^{*}(3,2) \leq 4$. Can we extend this construction to k-saturated ?

Antichain saturation

[n]

Construction: $\operatorname{sat}^{*}(n, k) \leq(n-1)(k-1)+2$.

Antichain saturation

Construction: $\operatorname{sat}^{*}(n, k) \leq(n-1)(k-1)+2$.
Ferrara, Kay, Kramer, Martin, Reiniger, Smith and Sullivan (2017).

$$
\begin{array}{c|ccc}
k & 2 & 3 & 4 \\
\operatorname{sat}^{*}(k, n) & n+1 & 2 n & 3 n-1
\end{array}
$$

Conjecture (FKKMRSS): $\forall k \geq 2$, $\operatorname{sat}^{*}(n, k) \sim n(k-1)$ as $n \rightarrow \infty$.

Antichain saturation

Construction: $\operatorname{sat}^{*}(n, k) \leq(n-1)(k-1)+2$.
Ferrara, Kay, Kramer, Martin, Reiniger, Smith and Sullivan (2017). Danković and Ivan (2022+)

k	2	3	4	5	6
$\operatorname{sat}^{*}(k, n)$	$n+1$	$2 n$	$3 n-1$	$4 n-2$	$5 n-5$

Conjecture (FKKMRSS): $\forall k \geq 2, \operatorname{sat}^{*}(n, k) \sim n(k-1)$ as $n \rightarrow \infty$.

Conjecture (Danković and Ivan): $\forall k \geq 2$, sat ${ }^{*}(n, k) \geq n(k-1)-C_{k}$.

Antichain saturation

Construction: $\operatorname{sat}^{*}(n, k) \leq(n-1)(k-1)+2$.
Ferrara, Kay, Kramer, Martin, Reiniger, Smith and Sullivan (2017). Danković and Ivan (2022+)

k	2	3	4	5	6
sat $^{*}(k, n)$	$n+1$	$2 n$	$3 n-1$	$4 n-2$	$5 n-5$

Conjecture (FKKMRSS): $\forall k \geq 2, \operatorname{sat}^{*}(n, k) \sim n(k-1)$ as $n \rightarrow \infty$.
Conjecture (Danković and Ivan): $\forall k \geq 2$, sat ${ }^{*}(n, k) \geq n(k-1)-C_{k}$.

There is a half page proof of both conjecture with our decomposition lemma!

Exact values

$\nu(\mathcal{F}) \rightarrow$ the size of the maximum matching from \mathcal{F} to its shadow $\partial \mathcal{F}$.
$\mathcal{C}(m, t) \rightarrow$ initial segment of colex of size m on layer t.
Define the sequence $c_{\lfloor\ell / 2\rfloor}=k-1$, and for $0 \leq t<\lfloor\ell / 2\rfloor$, let $c_{t}=\nu\left(\mathcal{C}\left(c_{t+1}, t+1\right)\right)$.
B, Groenland, Jacob and Johnston (2023+)
For $n \geq 2 \log (k)+1$,

$$
\operatorname{sat}^{*}(n, k)=2 \sum_{t=0}^{\lfloor\ell / 2\rfloor} c_{t}+(k-1)(n-1-2\lfloor\ell / 2\rfloor) .
$$

The lower bound still holds for $n \geq \ell$ (and $\operatorname{sat}^{*}(n, k)=2^{n}$ for $n<\ell$).

General saturation

General saturation

Definition

$\mathcal{F} \subseteq 2^{[n]}$ a set system is \mathcal{P}-saturated if:

- \mathcal{F} has no induced copy of \mathcal{P};
- $\mathcal{F} \cup\{x\}$ has an induced copy of \mathcal{P} for any $x \in 2^{[n]} \backslash \mathcal{P}$.

General saturation

Definition

$\mathcal{F} \subseteq 2^{[n]}$ a set system is \mathcal{P}-saturated if:

- \mathcal{F} has no induced copy of \mathcal{P};
- $\mathcal{F} \cup\{x\}$ has an induced copy of \mathcal{P} for any $x \in 2^{[n]} \backslash \mathcal{P}$.

Theorem (Morrison, Noel and Scott 2014;

$$
\leq \operatorname{sat}^{*}\left(n, C_{k}\right) \leq 2^{0.98 k}
$$

General saturation

Definition

$\mathcal{F} \subseteq 2^{[n]}$ a set system is \mathcal{P}-saturated if:

- \mathcal{F} has no induced copy of \mathcal{P};
- $\mathcal{F} \cup\{x\}$ has an induced copy of \mathcal{P} for any $x \in 2^{[n]} \backslash \mathcal{P}$.

Theorem (Morrison, Noel and Scott 2014;
Gerbner, Keszegh, Lemons, Palmer, Pálvölgyi, Patkós 2011)

$$
2^{(k-3) / 2} \leq \operatorname{sat}^{*}\left(n, C_{k}\right) \leq 2^{0.98 k}
$$

Table

poset P	$\mathbf{s a t}(n, P)$	$\mathbf{s a t}^{*}(n, P)$	
C_{2}, chain	$=1$	$=1$	
A_{2}, antichain	$=1$	$=n+1$	
C_{3}, chain	$=2$	$=2$	case analysis
$C_{2}+C_{1}$, chain and single	$=2$	$=4$	[F7]
\vee fork (or $\wedge)$	$=2$	$=n+1$	[F7]
A_{3}, antichain	$=2$	$=3 n-1$	[G6]
C_{4}, chain	$=4$	$=4$	[F7]
\vee_{3}, fork with three tines	$=3$	$\geq \log _{2} n$	[F3W]
\diamond, diamond	$=3$	$\geq \sqrt{n}$	case analysis
$\diamond{ }^{-}$, diamond minus an edge	$=3$	$=4$	[Thm 3.16]
\bowtie, butterfly	$=4$	$\geq n+1$	[Thm. [3.6]
Y		$\leq 6 n-10$	[F7]
N	$=3$	$\geq \log _{2} n$	[Thm. [3.11]
	$=3$	$\geq \sqrt{n}$	[Prop. [3.9]

Figure 1: Table from Keszegh, Lemons, Martin, Pálvölgyi and Patkós 2022

Table

$C_{3}+C_{1}$, chain and single	$=3$	≤ 8	Prop. [3.18]
$V+1$, fork and single	$=3$	$\geq \log _{2} n$	[F7]
$C_{2}+A_{2}$	$=3$	≤ 8	Prop. [3.18]
A_{4}, antichain	$=3$	$\geq 3 n-1$	[F7]
		$\leq 4 n+2$	[F7]
C_{5}, chain	$=8$	$=8$	[G6]+[MNS]
C_{6}, chain	$=16$	$=16$	[G6]+[MNS]
C_{k}, chain ($k \geq 7$)	$\geq 2^{(k-3) / 2}$	$\geq 2^{(k-3) / 2}$	[G6]
	$\leq 2^{0.98 k}$	$\leq 2^{0.98 k}$	[MNS]
A_{k}, antichain	$=k-1$	$\geq\left(1-\frac{1}{\log _{2} k}\right) \frac{k}{\log _{2} k} n$	[MSW]
		$\leq k n-k-\frac{1}{2} \log _{2} k+O(1)$	[F7]
$3 C_{2}$	$=5$	≤ 14	Prop. 3.13]
$5 C_{2}$	$=9$	≤ 42	Prop. [3.18]
$7 C_{2}$	$=13$	≤ 60	[Prop. 3.18]
any poset on k elements	$\leq 2^{k-2}$	-	[Thm. 1.1]
UCTP (def. in Section 3.2)	$O(1)$	$\geq \log _{2} n$	[F7]
UCTP with top chain	$O(1)$	$\geq \log _{2} n$	[Thm. 3.6]
chain + shallower	$O(1)$	$O(1)$	[Thm. 3.8]

Figure 2: Table from Keszegh, Lemons, Martin, Pálvölgyi and Patkós 2022

General bounds

Very recently, a general lower bound has been shown.
Theorem (Freschi, Piga, Sharifzadeh and Treglown 2023)
For any poset P either sat $(n, P) \geq 2 \sqrt{n}-2$ or sat* $(n, P)=O_{P}(1)$.

General bounds

Very recently, a general lower bound has been shown.
Theorem (Freschi, Piga, Sharifzadeh and Treglown 2023)
For any poset P either sat ${ }^{*}(n, P) \geq 2 \sqrt{n}-2$ or sat* $(n, P)=O_{P}(1)$.
What about a general upper bound? Can we hope to have sat* $n, P) \leq 2^{\sqrt{n}}$ for every poset?

General bounds

Very recently, a general lower bound has been shown.
Theorem (Freschi, Piga, Sharifzadeh and Treglown 2023)
For any poset P either sat $(n, P) \geq 2 \sqrt{n}-2$ or sat* $(n, P)=O_{P}(1)$.
What about a general upper bound? Can we hope to have sat* $n, P) \leq 2^{\sqrt{n}}$ for every poset?
Theorem (B., Groenland, Ivan, Johnston, 2023+)
For any poset P, sat ${ }^{*}(n, P) \leq n^{|P|^{2}}$.

Open question

Conjecture

For every poset \mathcal{P}, either sat ${ }^{*}(n, \mathcal{P})=O_{\mathcal{P}}(1)$ or sat ${ }^{*}(n, \mathcal{P})=\Theta_{\mathcal{P}}(n)$.

Open question

Conjecture

For every poset \mathcal{P}, either sat ${ }^{*}(n, \mathcal{P})=O_{\mathcal{P}}(1)$ or sat ${ }^{*}(n, \mathcal{P})=\Theta_{\mathcal{P}}(n)$.

Open question

Conjecture

For every poset \mathcal{P}, either sat ${ }^{*}(n, \mathcal{P})=O_{\mathcal{P}}(1)$ or sat ${ }^{*}(n, \mathcal{P})=\Theta_{\mathcal{P}}(n)$.

$$
\operatorname{sat}^{*}\left(C_{2}, n\right)=1
$$

Open question

Conjecture

For every poset \mathcal{P}, either sat ${ }^{*}(n, \mathcal{P})=O_{\mathcal{P}}(1)$ or sat ${ }^{*}(n, \mathcal{P})=\Theta_{\mathcal{P}}(n)$.

$$
\operatorname{sat}^{*}\left(C_{2}, n\right)=1
$$

sat* $\left(2 C_{2}, n\right) \geq n$

Thank you!

Table

poset P	sat (n, P)	sat* (n, P)	
C_{2}, chain	$=1$	$=1$	
A_{2}, antichain	$=1$	$=n+1$	
C_{3}, chain	$=2$	$=2$	
$C_{2}+C_{1}$, chain and single	$=2$	$=4$	case analysis
\checkmark fork (or \wedge)	$=2$	$=n+1$	[F7]
A_{3}, antichain	$=2$	$=3 n-1$	[F7]
C_{4}, chain	$=4$	$=4$	[G6]
\vee_{3}, fork with three tines	$=3$	$\geq \log _{2} n$	[F7]
\diamond, diamond	$=3$	$\begin{aligned} & \geq \sqrt{n} \\ & \leq n+1 \end{aligned}$	$\begin{aligned} & {[\mathrm{MSW}]} \\ & {[\mathrm{F} 7]} \end{aligned}$
\diamond^{-}, diamond minus an edge	$=3$	$=4$	case analysis
\bowtie, butterfly	$=4$	$\begin{aligned} & \geq n+1 \\ & \leq 6 n-10 \end{aligned}$	$\begin{aligned} & {[\mathrm{I}]} \\ & {[\mathrm{Thm} 3.16]} \end{aligned}$
Y	$=3$	$\geq \log _{2} n$	Thm. 3.6]
N	$=3$	$\begin{aligned} & \geq \sqrt{n} \\ & \leq 2 n \end{aligned}$	$\begin{aligned} & {[\mathrm{I}]} \\ & {[\mathrm{F} 7]} \end{aligned}$
$2 \mathrm{C}_{2}$	$=3$	$\begin{aligned} & \geq n+2 \\ & \leq 2 n \\ & \hline \end{aligned}$	$\begin{aligned} & {[\text { Thm. } 3.11]} \\ & \text { [Prop. } 3.9] \\ & \hline \end{aligned}$

Figure 3: Table from [?]

Table

$C_{3}+C_{1}$, chain and single	$=3$	≤ 8	Prop. 3.18]
$V+1$, fork and single	$=3$	$\geq \log _{2} n$	[F7]
$C_{2}+A_{2}$	$=3$	≤ 8	Prop. [3.18]
A_{4}, antichain	$=3$	$\geq 3 n-1$	[F7]
		$\leq 4 n+2$	[F7]
C_{5}, chain	$=8$	$=8$	[G6]+[MNS]
C_{6}, chain	$=16$	$=16$	[G6]+[MNS]
C_{k}, chain ($k \geq 7$)	$\geq 2^{(k-3) / 2}$	$\geq 2^{(k-3) / 2}$	[G6]
	$\leq 2^{0.98 k}$	$\leq 2^{0.98 k}$	[MNS]
A_{k}, antichain	$=k-1$	$\geq\left(1-\frac{1}{\log _{2} k}\right) \frac{k}{\log _{2} k} n$	[MSW]
		$\leq k n-k-\frac{1}{2} \log _{2} k+O(1)$	[F7]
$3 C_{2}$	$=5$	≤ 14	Prop. 3.13]
$5 C_{2}$	$=9$	≤ 42	Prop. 3.18]
$7 C_{2}$	$=13$	≤ 60	Prop. [3.18]
any poset on k elements	$\leq 2^{k-2}$	-	[Thm. 1.1]
UCTP (def. in Section 3.2)	$O(1)$	$\geq \log _{2} n$	[F7]
UCTP with top chain	$O(1)$	$\geq \log _{2} n$	[Thm. 3.6]
chain + shallower	$O(1)$	$O(1)$	[Thm. 3.8]

Figure 4: Table from [?]

[^0]: ${ }^{1} \mathcal{F} \subseteq 2^{[n]}$ is convex if for all $X, Z \in \mathcal{F}$ and $X \subset Y \subset Z, Y \in \mathcal{F}$.

