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Boolean lattice

The Boolean lattice of dimension n:

• elements: 2[n] = P({1, . . . , n})
• relation: ⊆

A chain is a set system where every pair of

elements is comparable.

An antichain is a set system where every pair of

elements is incomparable.
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Boolean lattice

A chain C = {C1 ⊊ C2 ⊊ . . . ⊊ Ck} ⊆ P is

skipless in P if for all i ∈ [k − 1], there is no

X ∈ P with Ci ⊊ X ⊊ Ci+1.

∅

1 2 3

1 2 1 3 2 3

1 2 3

2/14



Boolean lattice

A chain C = {C1 ⊊ C2 ⊊ . . . ⊊ Ck} ⊆ P is

skipless in P if for all i ∈ [k − 1], there is no

X ∈ P with Ci ⊊ X ⊊ Ci+1.

∅

1 2 3

1 2 1 3 2 3

1 2 3

2/14



Chains in the hypercube

Theorem (Dilworth 1950)

For a family poset P, the size of the largest antichain is equal to the size of smallest chain

disjoint chain decomposition of P.

Can you ask for Dilworth theorem to use disjoint skipless chains?

NO

What if we view this poset embedded in the Boolean lattice...

1 2

1 2 4

1 2

1 2 3

24

True for every poset, and every way to embed it.
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Cover chains with skipless chains

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any subposet P of 2[n] with largest antichain of size k can be covered by a family of k

disjoint skipless chains in 2[n].

“Any family of k chains in 2[n] can be covered by a family of k disjoint skipless chains in 2[n].”

We generalise a result of Lehman and Ron (2001) who proved the special case where all chains

of the family are of size 2 and all top (resp. bottom) elements of the chain have the same size.

We generalise a result from Duffus, Howard and Leader (2019) who proved the special case

where the family is convex1.
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1F ⊆ 2[n] is convex if for all X ,Z ∈ F and X ⊂ Y ⊂ Z ,Y ∈ F .
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Sketch of the sketch of the proof

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of k chains in 2[n] can be covered by a family of k disjoint skipless chains in 2[n].

Double counting + Menger

C1 C2 C3 C4 D1 D2 D3 D4
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Sketch of the sketch of the proof

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of k chains in 2[n] can be covered by a family of k disjoint skipless chains in 2[n].

D1 D2 D3 D7 D4 D5 D6

A

C1 C2 C3 C7 C4 C5 C6

A
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Antichain saturation

F ⊆ 2[n], is k-saturated if:

• F has no antichain of size k;

• F ∪ {x} has an antichain of size k for any x ∈ 2[n] \ F .

sat*(n, k) = minimum |F| over all k-saturated families F in 2[n].

Red sets form an 2-saturated family for

the hypercube 2[3]: sat*(3, 2) ≤ 4.

Can we extend this construction to

k-saturated ?
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Antichain saturation

∅

[n]

Construction: sat*(n, k) ≤ (n − 1)(k − 1) + 2.

Ferrara, Kay, Kramer, Martin, Reiniger, Smith and Sullivan (2017).

Danković and Ivan (2022+)

k 2 3 4

5 6

sat∗(k, n) n + 1 2n 3n − 1

4n − 2 5n − 5

Conjecture (FKKMRSS): ∀k ≥ 2, sat*(n, k) ∼ n(k − 1) as n → ∞.

Conjecture (Danković and Ivan): ∀k ≥ 2, sat*(n, k) ≥ n(k − 1)− Ck .

There is a half page proof of both conjecture with our decomposition lemma!
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Conjecture (Danković and Ivan): ∀k ≥ 2, sat*(n, k) ≥ n(k − 1)− Ck .

There is a half page proof of both conjecture with our decomposition lemma! 8/14



Exact values

ν(F) → the size of the maximum matching from F to its shadow ∂F .

C(m, t) → initial segment of colex of size m on layer t.

Define the sequence c⌊ℓ/2⌋ = k − 1, and for 0 ≤ t < ⌊ℓ/2⌋, let ct = ν (C(ct+1, t + 1)).

B, Groenland, Jacob and Johnston (2023+)

For n ≥ 2 log(k) + 1,

sat∗(n, k) = 2

⌊ℓ/2⌋∑
t=0

ct + (k − 1)(n − 1− 2 ⌊ℓ/2⌋).

The lower bound still holds for n ≥ ℓ (and sat∗(n, k) = 2n for n < ℓ).
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General saturation

Definition

F ⊆ 2[n] a set system is P-saturated if:

• F has no induced copy of P;

• F ∪ {x} has an induced copy of P for any x ∈ 2[n] \ P.

Theorem (Morrison, Noel and Scott 2014;

Gerbner, Keszegh, Lemons, Palmer, Pálvölgyi, Patkós 2011)

2(k−3)/2

≤ sat*(n,Ck) ≤ 20.98k
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Table

Figure 1: Table from Keszegh, Lemons, Martin, Pálvölgyi and Patkós 2022
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Table

Figure 2: Table from Keszegh, Lemons, Martin, Pálvölgyi and Patkós 2022 12/14



General bounds

Very recently, a general lower bound has been shown.

Theorem (Freschi, Piga, Sharifzadeh and Treglown 2023)

For any poset P either sat*(n,P) ≥ 2
√
n − 2 or sat*(n,P) = OP(1).

What about a general upper bound? Can we hope to have sat*(n,P) ≤ 2
√
n for every poset?

Theorem (B., Groenland, Ivan, Johnston, 2023+)

For any poset P, sat*(n,P) ≤ n|P|2 .
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Open question

Conjecture

For every poset P, either sat*(n,P) = OP(1) or sat*(n,P) = ΘP(n).

sat*(C2, n) = 1 sat*(2C2, n) ≥ n sat*(3C2, n) ≤ 14

Thank you!
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Table

Figure 3: Table from [?]



Table

Figure 4: Table from [?]
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