Computing Twin-Width Parameterized by the Feedback Edge Number

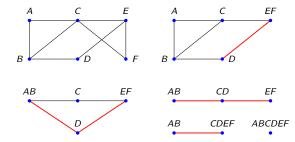
Jakub Balabán¹ Robert Ganian² <u>Mathis Rocton</u>²

¹ Masaryk University, Brno

²Technische Universität Wien

November 24, 2023

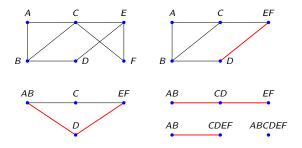
Twinwidth



・ロト ・四ト ・ヨト ・ヨト

æ

Twinwidth



The **twinwidth** tww(G) of G is the minimum over all contraction sequences of the contraction's width.

э

★ ∃ ► < ∃ ►</p>

[Bergé, Bonnet, Déprés (2022)]

Deciding if the twin-width is at most 4 is NP-hard.

< 回 > < 回 > < 回 >

[Bergé, Bonnet, Déprés (2022)]

Deciding if the twin-width is at most 4 is NP-hard.

Why do we care?

[Bonnet, Kim, Thomassé, Watrigant (2020)]

Provided a contraction sequence of width t as part of the input, FO model checking can be solved in FPT time, parameterized by t.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

[Bergé, Bonnet, Déprés (2022)]

Deciding if the twin-width is at most 4 is NP-hard.

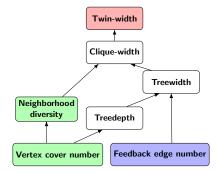
Why do we care?

[Bonnet, Kim, Thomassé, Watrigant (2020)]

Provided a contraction sequence of width t as part of the input, FO model checking can be solved in FPT time, parameterized by t.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Parameterized computation of twinwidth



Feedback edge number fen(G): minimum size of an edge set S, such that G - S has no cycles (*i.e.* is a forest).

・ 戸 ト ・ ヨ ト ・ ヨ ト

Twinwidth and Feedback Edge Number

Easy observation:

For any graph G, $tww(G) \leq fen(G) + 2$.

.

э

Easy observation:

For any graph G, $tww(G) \leq fen(G) + 2$.

We want to compute an approximate value for tww(G) independent of fen(G)!

Theorem

Deciding tww(G) ≤ 2 admits a linear bikernel when parameterized by the feedback edge number k of G. Moreover, a 2-contraction sequence for G (if one exists) can be computed in time $2^{\mathcal{O}(k \cdot \log k)} + n^{\mathcal{O}(1)}$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem

Deciding tww(G) ≤ 2 admits a linear bikernel when parameterized by the feedback edge number k of G. Moreover, a 2-contraction sequence for G (if one exists) can be computed in time $2^{\mathcal{O}(k \cdot \log k)} + n^{\mathcal{O}(1)}$.

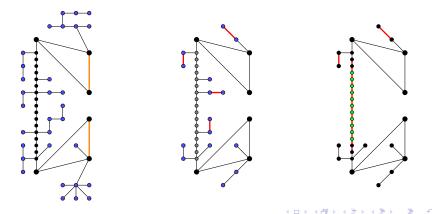
Theorem

For an n-vertex graph G with feedback edge number k, there is an algorithm running in time $f(k) \cdot n^{O(1)}$ for a computable function f which outputs a contraction sequence for G of width at most tww(G) + 1.

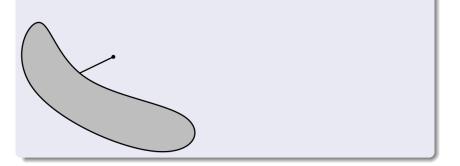
・ 同 ト ・ ヨ ト ・ ヨ ト

General idea

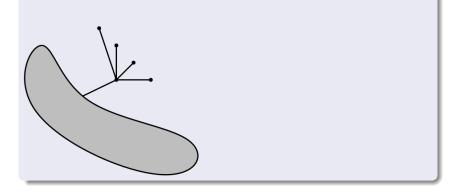
- Replace pendant trees by simpler structures of small size
- Replace long paths by paths of bounded size
- Combine these two rules as in classic kernelizations with feedback edge number

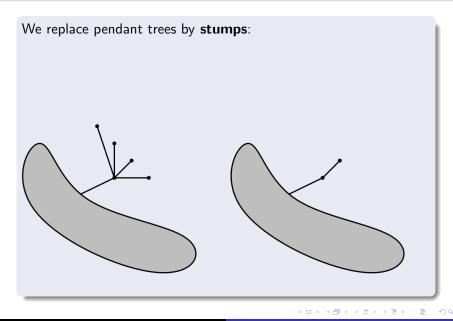


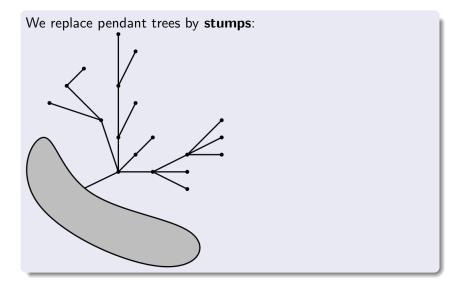
We replace pendant trees by **stumps**:

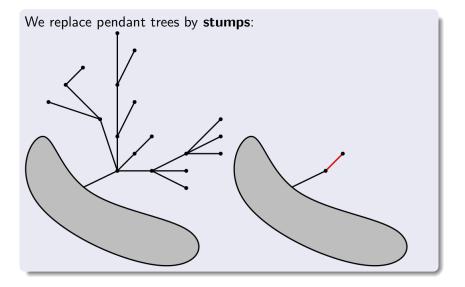


We replace pendant trees by **stumps**:









When tww(G) = 2...

... we can shorten paths to a bounded length!

伺 ト イヨ ト イヨ ト

When tww(G) = 2...

... we can shorten paths to a bounded length!

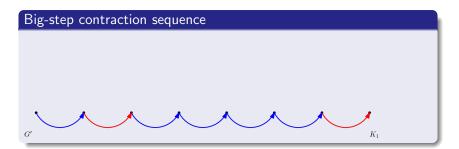
It does not generalize!

There cannot be any constant c such that shortening paths to length c preserves twinwidth in general.

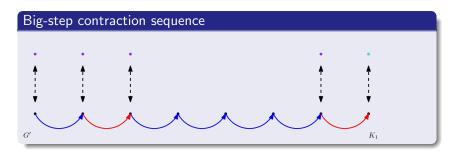
伺 ト イヨ ト イヨト

- two vertices of S are contracted together, or;
- a new red edge is created between two vertices of S.

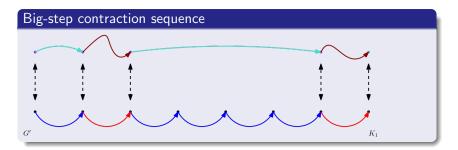
- two vertices of S are contracted together, or;
- a new red edge is created between two vertices of S.



- two vertices of S are contracted together, or;
- a new red edge is created between two vertices of S.

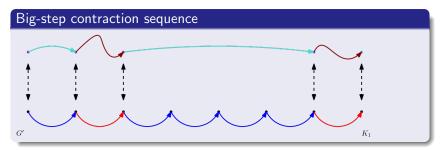


- two vertices of S are contracted together, or;
- a new red edge is created between two vertices of S.

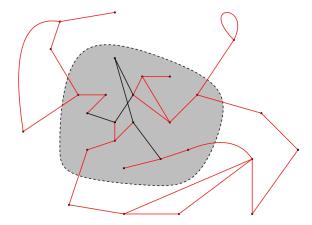


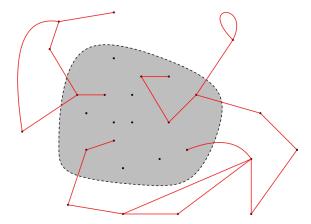
Given a set of vertices $S \subseteq V(G)$, a contraction is **decisive** if:

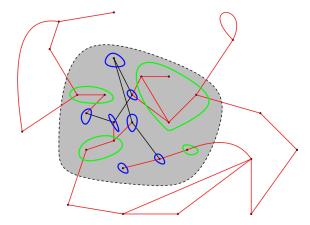
- two vertices of S are contracted together, or;
- a new red edge is created between two vertices of S.

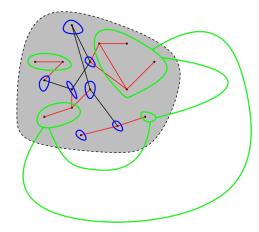


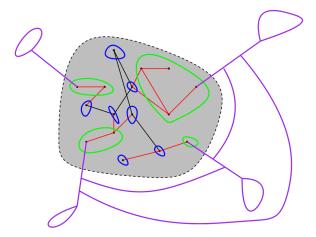
The number of big steps is $\mathcal{O}(|S|^2)$: \rightarrow For us |S| will be function of the **feedback edge number**.

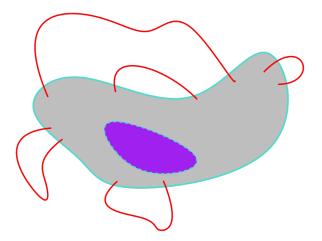












æ

Future work: near-optimal contraction sequences in FPT-time by *treedepth*? By *treewidth*?

Thanks! Questions?

• • = • • = •