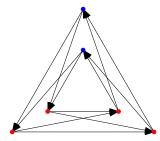
Some problems and results on acyclic sets and colouring of digraphs

Gil Puig i Surroca¹ Joint work with Ararat Harutyunyan¹ and Colin McDiarmid²

¹LAMSADE - Université Paris Dauphine ²Mathematical Institute - University of Oxford

23 November 2023

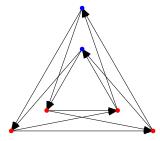
1/19



< 3 >

< □ > < 同 >

æ



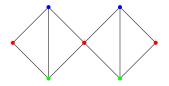
 $\vec{lpha}(D) := \max\{|S| \mid S \subseteq V(D) \text{ acyclic}\}$

 $\vec{\chi}(D) := \min\{|P| \mid P \text{ partition of } V(D) \text{ into acyclic sets}\}$

3 N 3

2/19

< 行



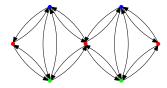
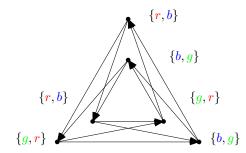
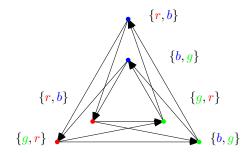


Image: Image:

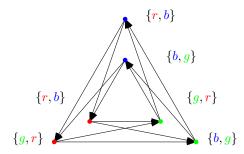
문 문 문



문 🛌 🖻

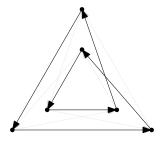


문 🛌 🖻



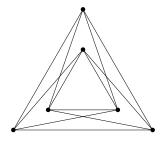
 $ec{\chi_\ell}(D) := \min\{k \mid ext{every assignment of } k ext{-lists admits an acyclic colouring}\}$ $ec{\chi}(D) \leq ec{\chi_\ell}(D)$

Circumference bounds



문 🛌 🖻

Circumference bounds

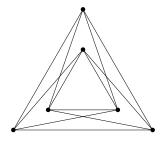


Theorem (Bondy, 1976)

Let G be an undirected graph. If G has a strongly connected orientation with circumference s, then $\chi(G) \leq s$.

7/19

Circumference bounds



Theorem (Bondy, 1976)

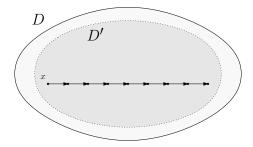
Let G be an undirected graph. If G has a strongly connected orientation with circumference s, then $\chi(G) \leq s$.

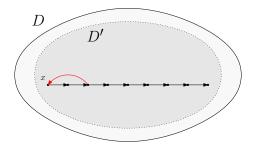
Theorem (Chen, Ma and Wang, 2015)

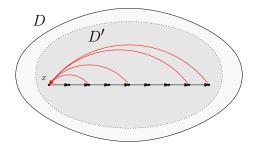
Let $k, r \in \mathbb{Z}$ with $k \ge 2$. If a digraph D has no directed cycle of length r modulo k, then $\vec{\chi}(D) \le k$.

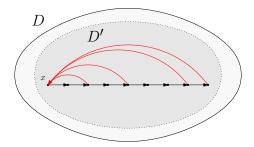
Let D be a digraph in which the set of all (directed) cycle lengths has size k. Then $\vec{\chi}_{\ell}(D) \leq k + 1$.

8/19









Theorem (cf. Cordero-Michel and Galeana-Sánchez, 2019)

Let D be a digraph with circumference s and digirth g. Then $\vec{\chi}(D) \leq \lceil s/(g-1) \rceil$.

Theorem (cf. Cordero-Michel and Galeana-Sánchez, 2019)

Let D be a digraph with circumference s and digirth g. Then $\vec{\chi}(D) \leq \lceil s/(g-1) \rceil$.

Question

Let D be an oriented graph with circumference s. Is it true that $\vec{\chi}(D) = O(s/\ln s)$?

Theorem (cf. Cordero-Michel and Galeana-Sánchez, 2019)

Let D be a digraph with circumference s and digirth g. Then $\vec{\chi}(D) \leq \lceil s/(g-1) \rceil$.

Question

Let D be an oriented graph with circumference s. Is it true that $\vec{\chi}(D) = O(s/\ln s)$?

Theorem

Let T be a tournament with circumference s. Then $\vec{\chi}_{\ell}(T) \leq (1 + o(1))s/\log_2 s$ as $s \to \infty$.

ヘロト 人間ト ヘヨト ヘヨト

3

Conjecture (Aharoni, Berger and Kfir, 2008)

Let D be an n-vertex oriented graph with average outdegree d^+ . Then, $\vec{\alpha}(D) \ge (1 + o(1))n \log_2 d^+/d^+$.

Conjecture (Aharoni, Berger and Kfir, 2008)

Let D be an n-vertex oriented graph with average outdegree d^+ . Then, $\vec{\alpha}(D) \ge (1 + o(1))n \log_2 d^+/d^+$.

Theorem (Shearer, 1982)

Let G be an n-vertex triangle-free graph with average degree d. Then, $\alpha(G) \ge (1 + o(1))n \ln d/d$.

Theorem (Spencer and Subramanian, 2008)

Let $\mathcal{D}(n, p)$ be the random oriented graph on *n* vertices obtained by choosing each of the $\binom{n}{2}$ possible edges independently with probability 2p and then orienting each of the chosen edges independently with probability 1/2. Then,

$$\vec{\alpha}(\mathcal{D}(n,p)) = \frac{2\ln(np)}{-\ln(1-p)}(1+o(1))$$

asymptotically almost surely, provided that $p \ge W/n$, where W is a fixed constant.

Theorem (Spencer and Subramanian, 2008)

Let $\mathcal{D}(n, p)$ be the random oriented graph on *n* vertices obtained by choosing each of the $\binom{n}{2}$ possible edges independently with probability 2p and then orienting each of the chosen edges independently with probability 1/2. Then,

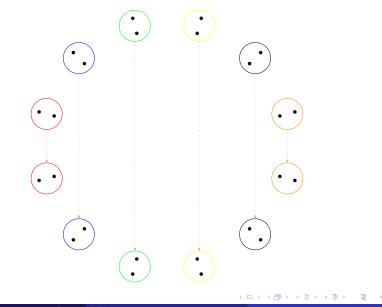
$$\vec{\alpha}(\mathcal{D}(n,p)) = \frac{2\ln(np)}{-\ln(1-p)}(1+o(1))$$

asymptotically almost surely, provided that $p \ge W/n$, where W is a fixed constant.

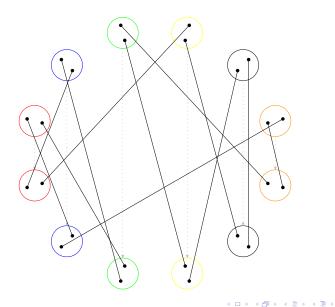
Theorem

Let $\mathbf{D}(n, d)$ be the uniform random *d*-regular digraph on *n* vertices. If $d \ge 2$, then $\vec{\alpha}(\mathbf{D}(n, d)) = \Theta(n \ln d/d)$ asymptotically almost surely.

14 / 19



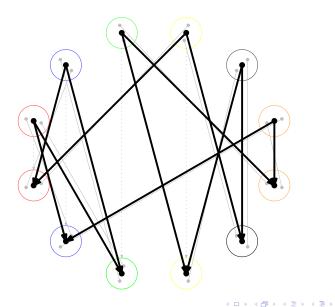
(JGA2023, Université Lyon 1) P&R on acyclic sets and digraph colouring 23 November 2023



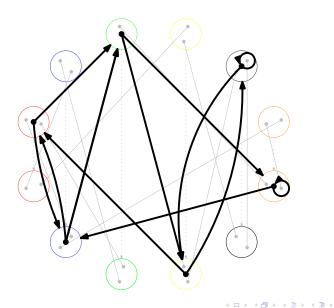
(JGA2023, Université Lyon 1) P&R on acyclic sets and digraph colouring 23 N

æ

6 / 19



æ



3

 \vec{T}_3 -free digraphs satisfy the *ABK* conjecture, up to multiplication by a constant.

Question

Do \vec{C}_3 -free digraphs satisfy the *ABK* conjecture (up to multiplication by a constant)?