On/off Graphs

Antoine Castillon¹², J. Baste, C. Dhaenens¹, M. Haddad, H. Seba²

1. CRIStAL Lille, 2. LIRIS Lyon

JGA 2023

On/off Graphs

Whac-A-Mole

Whac-A-Mole

Definition (On/off Graph)

We define an on/off graph as a tuple (G, α, ω) where G = (V, E) is a graph and $\alpha : V \to \mathbb{N}^*$, $\omega : V \to \mathbb{N}^*$ such that $\forall v \in V, \alpha(v) \le \omega(v)$.

- Active vertices $V_t = \{v \in V \mid \alpha(v) \le t < \omega(v)\}.$
- Active subgraph $G_t = G[V_t]$.

Definition (On/off Graph)

We define an on/off graph as a tuple (G, α, ω) where G = (V, E) is a graph and $\alpha : V \to \mathbb{N}^*$, $\omega : V \to \mathbb{N}^*$ such that $\forall v \in V, \alpha(v) \le \omega(v)$.

- Active vertices $V_t = \{v \in V \mid \alpha(v) \le t < \omega(v)\}.$
- Active subgraph $G_t = G[V_t]$.

Definition (On/off Graph)

We define an on/off graph as a tuple (G, α, ω) where G = (V, E) is a graph and $\alpha : V \to \mathbb{N}^*$, $\omega : V \to \mathbb{N}^*$ such that $\forall v \in V, \alpha(v) \le \omega(v)$.

- Active vertices $V_t = \{v \in V \mid \alpha(v) \le t < \omega(v)\}.$
- Active subgraph $G_t = G[V_t]$.

Definition (On/off Graph)

We define an on/off graph as a tuple (G, α, ω) where G = (V, E) is a graph and $\alpha : V \to \mathbb{N}^*$, $\omega : V \to \mathbb{N}^*$ such that $\forall v \in V, \alpha(v) \le \omega(v)$.

- Active vertices $V_t = \{v \in V \mid \alpha(v) \le t < \omega(v)\}.$
- Active subgraph $G_t = G[V_t]$.

Definition (On/off Graph)

We define an on/off graph as a tuple (G, α, ω) where G = (V, E) is a graph and $\alpha : V \to \mathbb{N}^*$, $\omega : V \to \mathbb{N}^*$ such that $\forall v \in V, \alpha(v) \le \omega(v)$.

- Active vertices $V_t = \{v \in V \mid \alpha(v) \le t < \omega(v)\}.$
- Active subgraph $G_t = G[V_t]$.

Problem (On/off- π problem)

- Input: G = (V, E) a graph, $\alpha : V \to \mathbb{N}$.
- **Output:** $\omega: V \to \mathbb{N}$ s.t.
 - (G, α, ω) is an on/off graph,
 - $|\omega^{-1}(t)| \leq \Omega$, Ω being a fixed constant,
 - G_t verifies π .

- Input: G = (V, E) a graph, $\alpha : V \to \mathbb{N}$.
- **Output:** $\omega: V \to \mathbb{N}$ s.t.
 - (G, α, ω) is an on/off graph,
 - $|\omega^{-1}(t)| \leq \Omega$, Ω being a fixed constant,
 - G_t is a Clique.

- Input: G = (V, E) a graph, $\alpha : V \to \mathbb{N}$.
- **Output:** $\omega: V \to \mathbb{N}$ s.t.
 - (G, α, ω) is an on/off graph,
 - $|\omega^{-1}(t)| \leq \Omega$, Ω being a fixed constant,
 - G_t is a Clique.

- Input: G = (V, E) a graph, $\alpha : V \to \mathbb{N}$.
- **Output:** $\omega: V \to \mathbb{N}$ s.t.
 - (G, α, ω) is an on/off graph,
 - $|\omega^{-1}(t)| \leq \Omega$, Ω being a fixed constant,
 - G_t is a Clique.

- Input: G = (V, E) a graph, $\alpha : V \to \mathbb{N}$.
- **Output:** $\omega: V \to \mathbb{N}$ s.t.
 - (G, α, ω) is an on/off graph,
 - $|\omega^{-1}(t)| \leq \Omega$, Ω being a fixed constant,
 - G_t is a Clique.

- Input: G = (V, E) a graph, $\alpha : V \to \mathbb{N}$.
- **Output:** $\omega: V \to \mathbb{N}$ s.t.
 - (G, α, ω) is an on/off graph,
 - $|\omega^{-1}(t)| \leq \Omega$, Ω being a fixed constant,
 - G_t is a Clique.

Classical complexity

 ${\ \ \, }$ On/off-Clique is NP-complete, for all constant $\Omega\geq 1.$

Classical complexity

• On/off-Clique is NP-complete, for all constant $\Omega \geq 1.$

```
Given π a graph property s.t.
 π is non trivial,
 π is hereditary,
 π is polynomial.
```

Theorem (Yannakakis 1978)

The π -vertex deletion problem is NP-complete.

Classical complexity

 $\bullet \ \mbox{On/off-Clique is NP-complete, for all constant } \Omega \geq 1.$

```
Given π a graph property s.t.
π is non trivial,
π is hereditary,
π is polynomial.
```

Theorem (Yannakakis 1978)

The π -vertex deletion problem is NP-complete.

Theorem (Adapted)

The on/off- π problem is NP-complete, for all constant $\Omega \geq 1$.

Parameterized Complexity

Parameters specific to on/off graphs:

•
$$T = \max_{v \in V} \alpha(v),$$

•
$$A = \max_{0 \le t \le T} |\alpha^{-1}(t)|,$$

•
$$\Omega = \max_{0 \le t \le T} |\omega^{-1}(t)|,$$

Parameterized Complexity

Parameters specific to on/off graphs:

•
$$T = \max_{v \in V} \alpha(v),$$

•
$$A = \max_{0 \le t \le T} |\alpha^{-1}(t)|,$$

•
$$\Omega = \max_{0 \le t \le T} |\omega^{-1}(t)|,$$

Graph parameters:

- Δ, h-index, degeneracy, ...
- Widths: *tw*, *cw*, *pw*, ...

Parameterized Complexity

Parameters specific to on/off graphs:

•
$$T = \max_{v \in V} \alpha(v)$$
,
• $A = \max_{0 \le t \le T} |\alpha^{-1}(t)|$, paraNP (NP-hard with $A \ge 2$)
• $\Omega = \max_{0 \le t \le T} |\omega^{-1}(t)|$, paraNP (NP-hard with $\Omega \ge 1$)

Graph parameters:

- Δ, *h*-index, degeneracy, …
- Widths: tw, cw, pw, ...

Generic algorithm

Enumerating all subgraphs of G verifying $\pi \implies$ solving on/off- π problem.

Generic algorithm

Enumerating all subgraphs of G verifying $\pi \implies$ solving on/off- π problem.

- 1. Enumerate subgraphs verifying π
- 2. Construct configuration graph
- 3.**Output** path from $(\emptyset, 0)$ to (..., T)

Generic algorithm

Enumerating all subgraphs of G verifying $\pi \implies$ solving on/off- π problem.

- 1. Enumerate subgraphs verifying π
- 2. Construct configuration graph
- 3.**Output** path from $(\emptyset, 0)$ to (..., T)

Consequences:

 ${\scriptstyle \bullet }$ on/off-Clique is FPT when parameterized by $\textit{tw}, \Delta, \textit{h}, \textit{d}, \ldots$.

On/off-Independent Set

 \rightarrow Solvable in $T^{tw} \cdot 2^T \cdot n^{O(1)} \implies$ FPT in T + tw.

On/off-Independent Set

\rightarrow Solvable in $T^{tw} \cdot 2^T \cdot n^{O(1)} \implies$ FPT in T + tw.

Theorem

On/off-Independent Set is NP-hard even when restricted to paths.

On/off-Independent Set

\rightarrow Solvable in $T^{tw} \cdot 2^T \cdot n^{O(1)} \implies$ FPT in T + tw.

Theorem

On/off-Independent Set is NP-hard even when restricted to paths.

Consequences:

• On/off-Independent Set is paraNP-hard when parameterized by : $tw, cw, pw, \Delta, h, d, \dots$.

Use the α function to artificially link the vertices:

Use the α function to artificially link the vertices:

 \rightarrow Now *u* and *v* are incompatible.

Use the α function to artificially link the vertices:

 \rightarrow Now *u* and *v* are incompatible.

Using the previous gadget we can "remove" cycles:

Some variants of the gadget:

$$u$$
 $- \frac{t_0}{u}$

Some variants of the gadget:

Some variants of the gadget:

 \rightarrow On/off- π problem is NP-complete.

	Δ, h, d	tw	T + tw	Т	A	Ω
Clique	FPT	FPT	FPT	?	paraNP	paraNP
Independant Set	paraNP	paraNP	FPT	?	paraNP	paraNP
π	?	?	?	?	paraNP	paraNP

 \rightarrow On/off- π problem is NP-complete.

	Δ, h, d	tw	T + tw	Т	A	Ω
Clique	FPT	FPT	FPT	?	paraNP	paraNP
Independant Set	paraNP	paraNP	FPT	?	paraNP	paraNP
π	?	?	?	?	paraNP	paraNP

 \rightarrow On/off- π problem is NP-complete.

	Δ, h, d	tw	T + tw	Т	A	Ω
Clique	FPT	FPT	FPT	?	paraNP	paraNP
Independant Set	paraNP	paraNP	FPT	?	paraNP	paraNP
π	?	?	?	?	paraNP	paraNP

 \rightarrow The FPT(T + tw) algorithm is optimal for tw what about for T ?

 \rightarrow On/off- π problem is NP-complete.

	Δ, h, d	tw	T + tw	Т	A	Ω
Clique	FPT	FPT	FPT	?	paraNP	paraNP
Independant Set	paraNP	paraNP	FPT	?	paraNP	paraNP
π	?	?	?	?	paraNP	paraNP

 \rightarrow The FPT(T + tw) algorithm is optimal for tw what about for T ?

 $\rightarrow\,$ We believe that the result obtained for Independent Set can be extended to half of the properties.

 \rightarrow On/off- π problem is NP-complete.

	Δ, h, d	tw	T + tw	Т	A	Ω
Clique	FPT	FPT	FPT	?	paraNP	paraNP
Independant Set	paraNP	paraNP	FPT	?	paraNP	paraNP
π	?	?	?	?	paraNP	paraNP

- \rightarrow The FPT(T + tw) algorithm is optimal for tw what about for T ?
- $\rightarrow\,$ We believe that the result obtained for Independent Set can be extended to half of the properties.
- $\rightarrow\,$ Game theory: Maker-Breaker, 1st player activate the vertices and 2nd player deactivate them.

A	Castillas	
Antome	Castinon	

Thank You !