On/off Graphs

Antoine Castillon1,2, J. Baste, C. Dhaenens1, M. Haddad, H. Seba2

1. CRIStAL Lille, 2. LIRIS Lyon

JGA 2023
Whac-A-Mole
Whac-A-Mole
We define an on/off graph as a tuple \((G, \alpha, \omega)\) where \(G = (V, E)\) is a graph and \(\alpha : V \to \mathbb{N}^*, \omega : V \to \mathbb{N}^*\) such that \(\forall v \in V, \alpha(v) \leq \omega(v)\).

We note:
- Active vertices \(V_t = \{v \in V \mid \alpha(v) \leq t < \omega(v)\}\).
- Active subgraph \(G_t = G[V_t]\).
We define an on/off graph as a tuple \((G, \alpha, \omega)\) where \(G = (V, E)\) is a graph and
\[
\alpha : V \rightarrow \mathbb{N}^*, \ \omega : V \rightarrow \mathbb{N}^*
\] such that \(\forall v \in V, \ \alpha(v) \leq \omega(v)\).

We note:
- Active vertices \(V_t = \{v \in V \mid \alpha(v) \leq t < \omega(v)\}\).
- Active subgraph \(G_t = G[V_t]\).
We define an on/off graph as a tuple \((G, \alpha, \omega)\) where \(G = (V, E)\) is a graph and \(\alpha : V \rightarrow \mathbb{N}^*, \omega : V \rightarrow \mathbb{N}^*\) such that \(\forall v \in V, \alpha(v) \leq \omega(v)\).

We note:
- Active vertices \(V_t = \{v \in V \mid \alpha(v) \leq t < \omega(v)\}\).
- Active subgraph \(G_t = G[V_t]\).
We define an on/off graph as a tuple (G, α, ω) where $G = (V, E)$ is a graph and $\alpha : V \rightarrow \mathbb{N}^*$, $\omega : V \rightarrow \mathbb{N}^*$ such that $\forall v \in V, \alpha(v) \leq \omega(v)$.

We note:
- Active vertices $V_t = \{v \in V \mid \alpha(v) \leq t < \omega(v)\}$.
- Active subgraph $G_t = G[V_t]$.
We define an on/off graph as a tuple (G, α, ω) where $G = (V, E)$ is a graph and $\alpha : V \rightarrow \mathbb{N}^*$, $\omega : V \rightarrow \mathbb{N}^*$ such that $\forall v \in V, \alpha(v) \leq \omega(v)$.

We note:

- Active vertices $V_t = \{v \in V \mid \alpha(v) \leq t < \omega(v)\}$.
- Active subgraph $G_t = G[V_t]$.
Problem (On/off-\(\pi\) problem)

- **Input**: \(G = (V, E)\) a graph, \(\alpha : V \rightarrow \mathbb{N}\).
- **Output**: \(\omega : V \rightarrow \mathbb{N}\) s.t.
 - \((G, \alpha, \omega)\) is an on/off graph,
 - \(|\omega^{-1}(t)| \leq \Omega\), \(\Omega\) being a fixed constant,
 - \(G_t\) verifies \(\pi\).
Problem (On/off-Clique problem)

- **Input:** $G = (V, E)$ a graph, $\alpha : V \to \mathbb{N}$.
- **Output:** $\omega : V \to \mathbb{N}$ s.t.
 - (G, α, ω) is an on/off graph,
 - $|\omega^{-1}(t)| \leq \Omega$, Ω being a fixed constant,
 - G_t is a Clique.
On/off Problems

Problem (On/off-Clique problem)

- **Input:** \(G = (V, E) \) a graph, \(\alpha : V \rightarrow \mathbb{N} \).
- **Output:** \(\omega : V \rightarrow \mathbb{N} \) s.t.
 - \((G, \alpha, \omega)\) is an on/off graph,
 - \(|\omega^{-1}(t)| \leq \Omega \), \(\Omega \) being a fixed constant,
 - \(G_t \) is a Clique.
Problem (On/off-Clique problem)

- **Input:** \(G = (V, E) \) a graph, \(\alpha : V \to \mathbb{N} \).
- **Output:** \(\omega : V \to \mathbb{N} \) s.t.
 - \((G, \alpha, \omega)\) is an on/off graph,
 - \(|\omega^{-1}(t)| \leq \Omega \), \(\Omega \) being a fixed constant,
 - \(G_t \) is a Clique.
Problem (On/off-Clique problem)

- **Input:** $G = (V, E)$ a graph, $\alpha : V \rightarrow \mathbb{N}$.
- **Output:** $\omega : V \rightarrow \mathbb{N}$ s.t.
 - (G, α, ω) is an on/off graph,
 - $|\omega^{-1}(t)| \leq \Omega$, Ω being a fixed constant,
 - G_t is a Clique.
Problem (On/off-Clique problem)

- **Input:** $G = (V, E)$ a graph, $\alpha : V \rightarrow \mathbb{N}$.
- **Output:** $\omega : V \rightarrow \mathbb{N}$ s.t.
 - (G, α, ω) is an on/off graph,
 - $|\omega^{-1}(t)| \leq \Omega$, Ω being a fixed constant,
 - G_t is a Clique.
Classical complexity

- On/off-Clique is NP-complete, for all constant $\Omega \geq 1$.
Classical complexity

- On/off-Clique is NP-complete, for all constant $\Omega \geq 1$.

Given π a graph property s.t.
- π is non trivial,
- π is hereditary,
- π is polynomial.

Theorem (Yannakakis 1978)

The π-vertex deletion problem is NP-complete.
Classical complexity

- On/off-Clique is NP-complete, for all constant $\Omega \geq 1$.

Given π a graph property s.t.
- π is non trivial,
- π is hereditary,
- π is polynomial.

Theorem (Yannakakis 1978)

The π-vertex deletion problem is NP-complete.

Theorem (Adapted)

*The on/off-π problem is NP-complete, for all constant $\Omega \geq 1$.***
Parameters specific to on/off graphs:

- $T = \max_{v \in V} \alpha(v)$,
- $A = \max_{0 \leq t \leq T} |\alpha^{-1}(t)|$,
- $\Omega = \max_{0 \leq t \leq T} |\omega^{-1}(t)|$.
Parameters specific to on/off graphs:

- $T = \max_{\nu \in V} \alpha(\nu)$,
- $A = \max_{0 \leq t \leq T} |\alpha^{-1}(t)|$,
- $\Omega = \max_{0 \leq t \leq T} |\omega^{-1}(t)|$,

Graph parameters:

- Δ, h-index, degeneracy, ...
- Widths: tw, cw, pw, ...
Parameterized Complexity

Parameters specific to on/off graphs:

- $T = \max_{v \in V} \alpha(v)$,
- $A = \max_{0 \leq t \leq T} |\alpha^{-1}(t)|$, paraNP (NP-hard with $A \geq 2$)
- $\Omega = \max_{0 \leq t \leq T} |\omega^{-1}(t)|$, paraNP (NP-hard with $\Omega \geq 1$)

Graph parameters:

- Δ, h-index, degeneracy, ...
- Widths: tw, cw, pw, ...

Generic algorithm

Enumerating all subgraphs of G verifying $\pi \implies$ solving on/off-π problem.
Generic algorithm

Enumerating all subgraphs of \(G \) verifying \(\pi \) \(\implies \) solving on/off-\(\pi \) problem.

1. **Enumerate** subgraphs verifying \(\pi \)
2. **Construct** configuration graph
3. **Output** path from \((\emptyset, 0)\) to \((\ldots, T)\)

\[
\begin{align*}
&+ \{ v \mid \alpha(v) = t \} \\
&- \{ \text{one vertex} \}
\end{align*}
\]
Generic algorithm

Enumerating all subgraphs of G verifying $\pi \implies$ solving on/off-\(\pi\) problem.

1. **Enumerate** subgraphs verifying π
2. **Construct** configuration graph
3. **Output** path from $(\emptyset, 0)$ to $(..., T)$

Consequences:
- on/off-Clique is FPT when parameterized by $tw, \Delta, h, d, ...$.

\[+\{v \mid \alpha(v) = t\} \quad \text{and} \quad -\{\text{one vertex}\} \]
On/off-Independent Set

→ Solvable in $T^{tw} \cdot 2^T \cdot n^{O(1)} \implies$ FPT in $T + tw$.
On/off-Independent Set

→ Solvable in $T^{tw} \cdot 2^T \cdot n^{O(1)} \Rightarrow$ FPT in $T + tw$.

Theorem

On/off-Independent Set is NP-hard even when restricted to paths.
On/off-Independent Set

→ Solvable in $T^{tw} \cdot 2^T \cdot n^{O(1)}$ \implies FPT in $T + tw$.

Theorem

On/off-Independent Set is NP-hard even when restricted to paths.

Consequences:

- On/off-Independent Set is paraNP-hard when parameterized by: $tw, cw, pw, \Delta, h, d, \ldots$.
On/off-Independent Set on paths

Use the α function to artificially link the vertices:
Use the α function to artificially link the vertices:

$$\alpha \leq t_0 \quad \alpha = t_0 + 2 \quad \alpha = t_0 + 1$$

Now u and v are incompatible.
Use the α function to artificially link the vertices:

$\alpha \leq t_0$ $\alpha = t_0 + 2$ $\alpha = t_0 + 1$

Now u and v are incompatible.
On/off-Independent Set on paths

Using the previous gadget we can “remove” cycles:
On/off-Independent Set on paths

Some variants of the gadget:
On/off-Independent Set on paths

Some variants of the gadget:

\[u \quad t_0 \quad u \]

\[u_1 \leftrightarrow u_2 \]

clones
On/off-Independent Set on paths

Some variants of the gadget:

- Clones: $u_1 \leftrightarrow u_2$
- Hyperedges: $\{u, v, w\}$

Diagram:

- Two nodes u connected by a dashed line t_0.
- Clones $u_1 \leftrightarrow u_2$.
- Hyperedges forming a triangle with u, v, w.
To sum up

→ On/off-π problem is NP-complete.

<table>
<thead>
<tr>
<th></th>
<th>Δ, h, d</th>
<th>tw</th>
<th>$T + tw$</th>
<th>T</th>
<th>A</th>
<th>Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clique</td>
<td>FPT</td>
<td>FPT</td>
<td>FPT</td>
<td>?</td>
<td>paraNP</td>
<td>paraNP</td>
</tr>
<tr>
<td>Independant Set</td>
<td>paraNP</td>
<td>paraNP</td>
<td>FPT</td>
<td>?</td>
<td>paraNP</td>
<td>paraNP</td>
</tr>
<tr>
<td>π</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>paraNP</td>
<td>paraNP</td>
</tr>
</tbody>
</table>
On/off-π problem is NP-complete.

<table>
<thead>
<tr>
<th></th>
<th>Δ, h, d</th>
<th>tw</th>
<th>T + tw</th>
<th>T</th>
<th>A</th>
<th>Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clique</td>
<td>FPT</td>
<td>FPT</td>
<td>FPT</td>
<td>?</td>
<td>paraNP</td>
<td>paraNP</td>
</tr>
<tr>
<td>Independant Set</td>
<td>paraNP</td>
<td>paraNP</td>
<td>FPT</td>
<td>?</td>
<td>paraNP</td>
<td>paraNP</td>
</tr>
</tbody>
</table>
On/off-π problem is NP-complete.

<table>
<thead>
<tr>
<th></th>
<th>Δ, h, d</th>
<th>tw</th>
<th>T + tw</th>
<th>T</th>
<th>A</th>
<th>Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clique</td>
<td>FPT</td>
<td>FPT</td>
<td>FPT</td>
<td>?</td>
<td>paraNP</td>
<td>paraNP</td>
</tr>
<tr>
<td>Independant Set</td>
<td>paraNP</td>
<td>paraNP</td>
<td>FPT</td>
<td>?</td>
<td>paraNP</td>
<td>paraNP</td>
</tr>
</tbody>
</table>

The FPT(T + tw) algorithm is optimal for tw what about for T?
→ On/off-π problem is NP-complete.

<table>
<thead>
<tr>
<th></th>
<th>Δ, h, d</th>
<th>tw</th>
<th>$T + tw$</th>
<th>T</th>
<th>A</th>
<th>Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clique</td>
<td>FPT</td>
<td>FPT</td>
<td>FPT</td>
<td>?</td>
<td>paraNP</td>
<td>paraNP</td>
</tr>
<tr>
<td>Independant Set</td>
<td>paraNP</td>
<td>paraNP</td>
<td>FPT</td>
<td>?</td>
<td>paraNP</td>
<td>paraNP</td>
</tr>
<tr>
<td>π</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>paraNP</td>
<td>paraNP</td>
</tr>
</tbody>
</table>

→ The FPT($T + tw$) algorithm is optimal for tw what about for T ?
→ We believe that the result obtained for Independent Set can be extended to half of the properties.
→ On/off-π problem is NP-complete.

<table>
<thead>
<tr>
<th></th>
<th>Δ, h, d</th>
<th>tw</th>
<th>$T + tw$</th>
<th>T</th>
<th>A</th>
<th>Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clique</td>
<td>FPT</td>
<td>FPT</td>
<td>FPT</td>
<td>?</td>
<td>paraNP</td>
<td>paraNP</td>
</tr>
<tr>
<td>Independent Set</td>
<td>paraNP</td>
<td>paraNP</td>
<td>FPT</td>
<td>?</td>
<td>paraNP</td>
<td>paraNP</td>
</tr>
<tr>
<td>π</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>paraNP</td>
<td>paraNP</td>
</tr>
</tbody>
</table>

→ The FPT($T + tw$) algorithm is optimal for tw what about for T ?
→ We believe that the result obtained for Independent Set can be extended to half of the properties.
→ Game theory: Maker-Breaker, 1st player activate the vertices and 2nd player deactivate them.
Thank You!