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Introduction Arborescences in digraphs Conclusion

Preliminaries

Question
What structures necessarily appear in (di)graphs of "high"
chromatic number?

minors, Hadwiger’s conjecture: χ≥ t → Kt

induced subgraphs, Gyárfás-Sumner conjecture: χ≥ f (t,T ) →
Kt or T
subgraphs: solved, trivial (next slide)
subdigraphs: this talk!
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Subtrees in graphs of large chromatic number

Question
Given H, is there some k s.t. χ(G )≥ k =⇒ G contains H as a
subgraph?

Theorem (Erdős, Hajnal ’1966)
There exist graphs of arbitrarily large girth and χ.

,→ if H is not a tree, no.
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χ-vertex trees in simple graphs
Graph G : find trees on χ(G ) vertices as subgraphs,
tight.

start with any colouring
stack left

,

still ≥χ classes (independent sets)
class i : at least one neighbour in j < i build T

What if we orient G? No guarantees on directions of arcs...
This talk : find k-vertex oriented subtrees when χ≥ f (k).
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Burr’s conjecture

Conjecture (Burr ’80)
If a digraph D satisfies χ(D)≥ 2k −2, then D contains every
oriented tree on k vertices as a subgraph.

Tight : diregular K2k−3 has no S+
k (ex: k = 4),

(k −1)2 suffices for k-vertex trees [Burr ’80].

Theorem (Addario-Berry, Havet, Linhares Sales, Reed, Thomassé ’13)
If a digraph D satisfies χ(D)≥ k2

2 − k
2 +1, then D contains

every oriented tree on k vertices.

≥ 2k −2 =⇒ paths, two-blocks paths*, diameter 3 trees
≥ 10k =⇒ antidirected trees, ≤ 4 blocks paths
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Our results

Theorem (Bessy, Gonçalves, R. ’23+)
If a digraph D satisfies χ(D)≥ 5k

p
k , then D contains every

oriented tree on k vertices.

In particular,
χ(D)≥ (b−1)k =⇒ D contains k-paths with b blocks (b ≥ 2).
χ(D)≥ 3k

p
k =⇒ D contains k-arborescences. This talk!

Definition An out-arborescence is an oriented tree with:

unique source u, root
∀v ̸= u, one path from u to v .

u
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Gluing leaves

Lemma (B ’80; A-B,H,L-S,R,T ’13)
Assume χ(D)≥ c =⇒ k-vertex T ,

then χ(D)≥ c +2(k +ℓ) =⇒ T with
ℓ out (/in) leaves glued to T .

T

χ(D) ≥ c+ 2(k + ℓ)

χ ≥ c

{d+ ≥ k + ℓ} ,→ O(k2).
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Gluing a path

Last technique: good for lots of leaves,

but adding a directed path
−→
Pℓ costs O(kℓ)...

Lemma (Bessy, Gonçalves, R. ’23+)
Assume χ(D)≥ c =⇒ k-vertex tree T .

Then χ(D)≥ c +k +2ℓ =⇒ T glued with a
−→
P ℓ.

χ(D) ≥ c+ k + 2ℓ

χ ≥ c
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Arborescences in digraphs

Tools for induction
We can glue leaves or a path to T by paying O(k) colours

Do this a minimal number of times...

Observation: an out-arborescence contains either ≥p
k out-leaves,

or can be partitionned into ≤p
k paths.

Induction

If ≤p
k leaves, done: pay 3k for each of the

p
k paths

If ≥p
k out-leaves, pay 2k to add them, induct...

χ(D)≥ 3k
p
k =⇒ D contains k-arborescences
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Conclusion

same gluing: χ≥ (b−1)k =⇒ b-blocks paths,

General oriented trees: same approach, harder gluing...

Merci!
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