Oriented trees in digraphs of high chromatic number

Amadeus Reinald
LIRMM, Université de Montpellier, CNRS

joint work with
Stéphane Bessy, Daniel Gonçalves

Journées Graphes et Algorithmes
21 Novembre 2023, Lyon
Question
What structures necessarily appear in (di)graphs of "high" chromatic number?
Question

What *structures* necessarily appear in (di)graphs of "high" chromatic number?

- *minors*, Hadwiger’s conjecture: $\chi \geq t \rightarrow K_t$
Question
What structures necessarily appear in (di)graphs of "high" chromatic number?

- minors, Hadwiger’s conjecture: $\chi \geq t \rightarrow K_t$
- induced subgraphs, Gyárfás-Sumner conjecture: $\chi \geq f(t, T) \rightarrow K_t$ or T
Question

What *structures* necessarily appear in (di)graphs of "high" chromatic number?

- minors, Hadwiger’s conjecture: $\chi \geq t \rightarrow K_t$
- induced subgraphs, Gyárfás-Sumner conjecture: $\chi \geq f(t, T) \rightarrow K_t$ or T
- subgraphs: solved, trivial (next slide)
Question

What structures necessarily appear in (di)graphs of "high" chromatic number?

- minors, Hadwiger’s conjecture: $\chi \geq t \rightarrow K_t$
- induced subgraphs, Gyárfás-Sumner conjecture: $\chi \geq f(t, T) \rightarrow K_t$ or T
- subgraphs: solved, trivial (next slide)
- subdigraphs: this talk!
Question

Given H, is there some k s.t. $\chi(G) \geq k \implies G$ contains H as a subgraph?
Question

Given H, is there some k s.t. $\chi(G) \geq k \implies$ G contains H as a subgraph?

Theorem (Erdős, Hajnal ’1966)

There exist graphs of arbitrarily large girth and χ.
Question

Given H, is there some k s.t. $\chi(G) \geq k \implies G$ contains H as a subgraph?

Theorem (Erdős, Hajnal ’1966)

There exist graphs of arbitrarily large girth and χ.

\iff if H is not a tree, *no.*
χ-vertex trees in simple graphs

Graph G: find trees on $\chi(G)$ vertices as subgraphs, tight.
\(\chi\)-vertex trees in simple graphs

Graph \(G\): find trees on \(\chi(G)\) vertices as subgraphs, tight.

- start with any colouring
\(\chi\)-vertex trees in simple graphs

Graph \(G\): find trees on \(\chi(G)\) vertices as subgraphs, tight.

- start with any colouring
- stack left,

![Graph diagram](Image)
χ-vertex trees in simple graphs

Graph G: find trees on $\chi(G)$ vertices as subgraphs, tight.

- start with any colouring
- stack left, still $\geq \chi$ classes (*independent sets*)
\(\chi\)-vertex trees in simple graphs

Graph \(G\): find trees on \(\chi(G)\) vertices as subgraphs, tight.

- start with any colouring
- stack left, still \(\geq \chi\) classes (\textit{independent sets})
- class \(i\): at least one neighbour in \(j < i\)
χ-vertex trees in simple graphs

Graph G: find trees on $\chi(G)$ vertices as subgraphs, tight.

- start with any colouring
- stack left, still $\geq \chi$ classes (*independent sets*)
- class i: at least one neighbour in $j < i$
χ-vertex trees in simple graphs

Graph G: find trees on $\chi(G)$ vertices as subgraphs, tight.

- start with any colouring
- stack left, still $\geq \chi$ classes (*independent sets*)
- class i: at least one neighbour in $j < i$
\(\chi \)-vertex trees in simple graphs

Graph \(G \): find trees on \(\chi(G) \) vertices as subgraphs, tight.

- start with any colouring
- stack left, still \(\geq \chi \) classes (independent sets)
- class \(i \): at least one neighbour in \(j < i \)
χ-vertex trees in simple graphs

Graph G: find trees on $\chi(G)$ vertices as subgraphs, tight.

- start with any colouring
- stack left, still $\geq \chi$ classes (independent sets)
- class i: at least one neighbour in $j < i$ build T
\(\chi\)-vertex trees in simple graphs

Graph \(G\): find trees on \(\chi(G)\) vertices as subgraphs, tight.

- start with any colouring
- stack left, still \(\geq \chi\) classes (independent sets)
- class \(i\): at least one neighbour in \(j < i\) build \(T\)
χ-vertex trees in simple graphs

Graph G: find trees on $\chi(G)$ vertices as subgraphs, tight.

- start with any colouring
- stack left, still $\geq \chi$ classes (independent sets)
- class i: at least one neighbour in $j < i$ build T
\(\chi \)-vertex trees in simple graphs

Graph \(G \): find trees on \(\chi(G) \) vertices as subgraphs, tight.

- start with any colouring
- stack left, still \(\geq \chi \) classes (independent sets)
- class \(i \): at least one neighbour in \(j < i \) build \(T \)
\(\chi \)-vertex trees in simple graphs

Graph \(G \): find trees on \(\chi(G) \) vertices as subgraphs, tight.

- start with any colouring
- stack left, still \(\geq \chi \) classes (\textit{independent sets})
- class \(i \): at least one neighbour in \(j < i \) build \(T \)
\(\chi\)-vertex trees in simple graphs

Graph \(G\): find trees on \(\chi(G)\) vertices as subgraphs, tight.

- start with any colouring
- stack left, still \(\geq \chi\) classes (\textit{independent sets})
- class \(i\): at least one neighbour in \(j < i\) build \(T\)
χ-vertex trees in simple graphs

Graph G: find trees on \(\chi(G) \) vertices as subgraphs, tight.

- start with any colouring
- stack left, still \(\geq \chi \) classes (\textit{independent sets})
- class \(i \): at least one neighbour in \(j < i \) build \(T \)
χ-vertex trees in simple graphs

Graph G: find trees on $\chi(G)$ vertices as subgraphs, tight.

- start with any colouring
- stack left, still $\geq \chi$ classes (independent sets)
- class i: at least one neighbour in $j < i$ build T

- What if we orient G?
χ-vertex trees in simple graphs

Graph \(G \): find trees on \(\chi(G) \) vertices as subgraphs, tight.

- start with any colouring
- stack left, still \(\geq \chi \) classes (independent sets)
- class \(i \): at least one neighbour in \(j < i \) build \(T \)

- What if we orient \(G \)? No guarantees on directions of arcs...
\(\chi\)-vertex trees in simple graphs

Graph \(G\): find trees on \(\chi(G)\) vertices as subgraphs, tight.

- start with any colouring
- stack left, still \(\geq \chi\) classes \((\textit{independent sets})\)
- class \(i\): at least one neighbour in \(j < i\) build \(T\)

- What if we \textbf{orient} \(G\)? No guarantees on directions of arcs...
- \textit{This talk}: find \(k\)-vertex oriented subtrees when \(\chi \geq f(k)\).
Burr’s conjecture

Conjecture (Burr ’80)
If a digraph D satisfies $\chi(D) \geq 2k - 2$, then D contains every oriented tree on k vertices as a subgraph.
Conjecture (Burr ’80)
If a digraph D satisfies $\chi(D) \geq 2k - 2$, then D contains every oriented tree on k vertices as a subgraph.

- **Tight**: diregular K_{2k-3} has no S_k^+ (ex: $k = 4$),
Burr’s conjecture

Conjecture (Burr ’80)
If a digraph D satisfies $\chi(D) \geq 2k - 2$, then D contains every oriented tree on k vertices as a subgraph.

- **Tight**: diregular K_{2k-3} has no S_k^+ (ex: $k = 4$),
- $(k - 1)^2$ suffices for k-vertex trees [Burr ’80].
Conjecture (Burr ’80)
If a digraph D satisfies $\chi(D) \geq 2k - 2$, then D contains every oriented tree on k vertices as a subgraph.

- **Tight**: diregular K_{2k-3} has no S_k^+ (ex: $k = 4$),
- $(k - 1)^2$ suffices for k-vertex trees [Burr ’80].

Theorem (Addario-Berry, Havet, Linhares Sales, Reed, Thomassé ’13)
If a digraph D satisfies $\chi(D) \geq \frac{k^2}{2} - \frac{k}{2} + 1$, then D contains every oriented tree on k vertices.
Burr’s conjecture

Conjecture (Burr ’80)
If a digraph D satisfies $\chi(D) \geq 2k - 2$, then D contains every oriented tree on k vertices as a subgraph.

- **Tight**: diregular K_{2k-3} has no S^+_k (ex: $k = 4$),
- $(k - 1)^2$ suffices for k-vertex trees [Burr ’80].

Theorem (Addario-Berry, Havet, Linhares Sales, Reed, Thomassé ’13)
If a digraph D satisfies $\chi(D) \geq \frac{k^2}{2} - \frac{k}{2} + 1$, then D contains every oriented tree on k vertices.

- $\geq 2k - 2 \implies$ paths, two-blocks paths*, diameter 3 trees
Conjecture (Burr ’80)

If a digraph D satisfies $\chi(D) \geq 2k - 2$, then D contains every oriented tree on k vertices as a subgraph.

- **Tight**: diregular K_{2k-3} has no S_k^+ (ex: $k = 4$),
- $(k - 1)^2$ suffices for k-vertex trees [Burr ’80].

Theorem (Addario-Berry, Havet, Linhares Sales, Reed, Thomassé ’13)

If a digraph D satisfies $\chi(D) \geq \frac{k^2}{2} - \frac{k}{2} + 1$, then D contains every oriented tree on k vertices.

- $\geq 2k - 2 \implies$ paths, two-blocks paths*, diameter 3 trees
- $\geq 10k \implies$ antidirected trees, ≤ 4 blocks paths
Our results

Theorem (Bessy, Gonçalves, R. ’23+)

If a digraph D satisfies $\chi(D) \geq 5k\sqrt{k}$, then D contains every oriented tree on k vertices.
Our results

Theorem (Bessy, Gonçalves, R. ’23+)

If a digraph D satisfies $\chi(D) \geq 5k\sqrt{k}$, then D contains every oriented tree on k vertices.

In particular,

- $\chi(D) \geq (b-1)k \implies D$ contains k-paths with b blocks ($b \geq 2$).
Our results

Theorem (Bessy, Gonçalves, R. ‘23+)
If a digraph D satisfies $\chi(D) \geq 5k\sqrt{k}$, then D contains every oriented tree on k vertices.

In particular,
- $\chi(D) \geq (b-1)k \implies D$ contains k-paths with b blocks ($b \geq 2$).
- $\chi(D) \geq 3k\sqrt{k} \implies D$ contains k-arborescences.
Our results

Theorem (Bessy, Gonçalves, R. ’23+)

If a digraph D satisfies $\chi(D) \geq 5k\sqrt{k}$, then D contains every oriented tree on k vertices.

In particular,

- $\chi(D) \geq (b-1)k \implies D$ contains k-paths with b blocks ($b \geq 2$).
- $\chi(D) \geq 3k\sqrt{k} \implies D$ contains k-arborescences. This talk!
Our results

Theorem (Bessy, Gonçalves, R. ’23+)
If a digraph D satisfies $\chi(D) \geq 5k\sqrt{k}$, then D contains every oriented tree on k vertices.

In particular,
- $\chi(D) \geq (b-1)k \implies D$ contains k-paths with b blocks ($b \geq 2$).
- $\chi(D) \geq 3k\sqrt{k} \implies D$ contains k-arborescences. This talk!

Definition An out-arborescence is an oriented tree with:

- unique source u, root
- $\forall v \neq u$, one path from u to v.
Our results

Theorem (Bessy, Gonçalves, R. ’23+)

If a digraph D satisfies $\chi(D) \geq 5k\sqrt{k}$, then D contains every oriented tree on k vertices.

In particular,
- $\chi(D) \geq (b-1)k \implies D$ contains k-paths with b blocks ($b \geq 2$).
- $\chi(D) \geq 3k\sqrt{k} \implies D$ contains k-arborescences. This talk!

Definition An out-arborescence is an oriented tree with:

- unique source u, root
- $\forall v \neq u$, one path from u to v.

Lemma (B ’80; A-B,H,L-S,R,T ’13)

Assume $\chi(D) \geq c \implies k$-vertex T,
Lemma (B ’80; A-B,H,L-S,R,T ’13)

- Assume $\chi(D) \geq c$ \implies k-vertex T,
- then $\chi(D) \geq c + 2(k + \ell) \implies T$ with ℓ out (/in) leaves glued to T.

![Diagram showing a tree T with ℓ leaves added to it]
Lemma (B ’80; A-B,H,L-S,R,T ’13)

- Assume $\chi(D) \geq c \implies$ k-vertex T,
- then $\chi(D) \geq c + 2(k + \ell) \implies T$ with ℓ out (/in) leaves glued to T.

$\chi(D) \geq c + 2(k + \ell)$
Lemma (B ’80; A-B,H,L-S,R,T ’13)

- **Assume** $\chi(D) \geq c \implies k$-vertex T,
- **then** $\chi(D) \geq c + 2(k + \ell) \implies T$ with ℓ out (/in) leaves glued to T.

\[
\chi(D) \geq c + 2(k + \ell) \\
\{d^+ \geq k + \ell\} \implies \chi(D) \geq c + 2(k + \ell) \implies T
\]
Lemma (B ’80; A-B,H,L-S,R,T ’13)

Assume $\chi(D) \geq c \implies k$-vertex T,
then $\chi(D) \geq c + 2(k + \ell) \implies T$ with
ℓ out (/in) leaves glued to T.
Lemma (B ’80; A-B,H,L-S,R,T ’13)

- Assume $\chi(D) \geq c \implies k$-vertex T,
- then $\chi(D) \geq c + 2(k + \ell) \implies T$ with ℓ out (/in) leaves glued to T.

\[\chi(D) \geq c \implies T \]
Lemma (B ’80; A-B,H,L-S,R,T ’13)

- Assume $\chi(D) \geq c \implies k$-vertex T,
- then $\chi(D) \geq c + 2(k + \ell) \implies T$ with ℓ out (/in) leaves glued to T.

![Diagram](image-url)
Lemma (B ’80; A-B,H,L-S,R,T ’13)

- **Assume** $\chi(D) \geq c \implies k$-vertex T,
- **then** $\chi(D) \geq c + 2(k + \ell) \implies T$ with ℓ out (/in) leaves glued to T.

$\chi(D) \geq c + 2(k + \ell)
\implies O(k^2)$.

\[\chi(D) \geq c + 2(k + \ell) \]

\[\chi \geq c \]

\[\{d^+ \geq k + \ell\} \]

\[\{d^+ < k + \ell\} \]
Gluing a path

- Last technique: good for lots of leaves,
Gluing a path

- Last technique: good for lots of leaves,
- but adding a directed path $\overrightarrow{P_\ell}$ costs $O(k\ell)$...
Gluing a path

- Last technique: good for lots of leaves,
- but adding a directed path \vec{P}_ℓ costs $O(k\ell)$...

Lemma (Bessy, Gonçalves, R. ’23+)
- Assume $\chi(D) \geq c \implies k$-vertex tree T.

\[
\chi(D) \geq c + k + 2\ell
\]
Gluing a path

- Last technique: good for lots of leaves,
- but adding a directed path P_ℓ costs $O(k\ell)$...

Lemma (Bessy, Gonçalves, R. ’23+)

- Assume $\chi(D) \geq c \implies k$-vertex tree T.
- Then $\chi(D) \geq c + k + 2\ell \implies T$ glued with a P_ℓ.
Gluing a path

- Last technique: good for lots of leaves,
- but adding a directed path \vec{P}_ℓ costs $O(k\ell)$...

Lemma (Bessy, Gonçalves, R. ’23+)

- Assume $\chi(D) \geq c \implies k$-vertex tree T.
- Then $\chi(D) \geq c + k + 2\ell \implies T$ glued with a \vec{P}_ℓ.
Gluing a path

- Last technique: good for lots of leaves,
- but adding a directed path \vec{P}_ℓ costs $O(k\ell)$...

Lemma (Bessy, Gonçalves, R. ’23+)

- Assume $\chi(D) \geq c \implies k$-vertex tree T.
- Then $\chi(D) \geq c + k + 2\ell \implies T$ glued with a \vec{P}_ℓ.

$$\chi(D) \geq c + k + 2\ell$$

max DAG
Gluing a path

- Last technique: good for lots of leaves,
- but adding a directed path \vec{P}_ℓ costs $O(k\ell)$...

Lemma (Bessy, Gonçalves, R. ’23+)

- Assume $\chi(D) \geq c \implies k$-vertex tree T.
- Then $\chi(D) \geq c + k + 2\ell \implies T$ glued with a \vec{P}_ℓ.

\[\chi(D) \geq c + k + 2\ell \]
Gluing a path

- Last technique: good for lots of leaves,
- but adding a directed path \overrightarrow{P}_ℓ costs $O(k\ell)$...

Lemma (Bessy, Gonçalves, R. ’23+)

- Assume $\chi(D) \geq c \implies k$-vertex tree T.
- Then $\chi(D) \geq c + k + 2\ell \implies T$ glued with a \overrightarrow{P}_ℓ.

\[\chi(D) \geq c + k + 2\ell \]

\[\chi \geq c \]

\[\chi \leq k + 2\ell \]
Gluing a path

- Last technique: good for lots of leaves,
- but adding a directed path $\overrightarrow{P_\ell}$ costs $O(k\ell)$...

Lemma (Bessy, Gonçalves, R. ’23+)

- Assume $\chi(D) \geq c \implies k$-vertex tree T.
- Then $\chi(D) \geq c + k + 2\ell \implies T$ glued with a $\overrightarrow{P_\ell}$.
Gluing a path

- Last technique: good for lots of leaves,
- but adding a directed path $\overrightarrow{P_\ell}$ costs $O(k\ell)$...

Lemma (Bessy, Gonçalves, R. ’23+)

- Assume $\chi(D) \ge c \implies k$-vertex tree T.
- Then $\chi(D) \ge c + k + 2\ell \implies T$ glued with a $\overrightarrow{P_\ell}$.
Arborescences in digraphs

Tools for induction

- We can glue leaves or a path to T by paying $O(k)$ colours
Arborescences in digraphs

Tools for induction

- We can glue leaves or a path to T by paying $O(k)$ colours
- Do this a minimal number of times...

Observation: an out-arborescence contains either $\geq p^k$ out-leaves, or can be partitioned into $\leq p^k$ paths.

Induction

If $\leq p^k$ leaves, done: pay 3^k for each of the p^k paths
If $\geq p^k$ out-leaves, pay 2^k to add them, induct...

$\chi(D) \geq 3^k p^k \implies D$ contains k-arborescences
Arborescences in digraphs

Tools for induction

- We can glue leaves or a path to T by paying $O(k)$ colours
- Do this a minimal number of times...

Observation: an out-arborescence contains either $\geq \sqrt{k}$ out-leaves, or can be partitionned into $\leq \sqrt{k}$ paths.
Arborescences in digraphs

Tools for induction
- We can glue leaves or a path to T by paying $O(k)$ colours
- Do this a minimal number of times...

Observation: an out-arborescence contains either $\geq \sqrt{k}$ out-leaves, or can be partitionned into $\leq \sqrt{k}$ paths.

Induction
- If $\leq \sqrt{k}$ leaves, **done**: pay $3k$ for each of the \sqrt{k} paths
Tools for induction

- We can glue leaves or a path to \(T \) by paying \(O(k) \) colours.
- Do this a minimal number of times...

Observation: an out-arborescence contains either \(\geq \sqrt{k} \) out-leaves, or can be partitioned into \(\leq \sqrt{k} \) paths.

Induction

- If \(\leq \sqrt{k} \) leaves, **done**: pay \(3k \) for each of the \(\sqrt{k} \) paths.
- If \(\geq \sqrt{k} \) out-leaves, pay \(2k \) to add them.
Arborescences in digraphs

Tools for induction
- We can glue leaves or a path to T by paying $O(k)$ colours.
- Do this a minimal number of times...

Observation: an out-arborescence contains either $\geq \sqrt{k}$ out-leaves, or can be partitioned into $\leq \sqrt{k}$ paths.

Induction
- If $\leq \sqrt{k}$ leaves, done: pay $3k$ for each of the \sqrt{k} paths.
- If $\geq \sqrt{k}$ out-leaves, pay $2k$ to add them, induct...
Tools for induction

- We can glue leaves or a path to T by paying $O(k)$ colours.
- Do this a minimal number of times...

Observation: an out-arborescence contains either $\geq \sqrt{k}$ out-leaves, or can be partitioned into $\leq \sqrt{k}$ paths.

Induction

- If $\leq \sqrt{k}$ leaves, done: pay $3k$ for each of the \sqrt{k} paths.
- If $\geq \sqrt{k}$ out-leaves, pay $2k$ to add them, induct...

$\chi(D) \geq 3k\sqrt{k} \implies D$ contains k-arborescences
same gluing: \(\chi \geq (b - 1)k \implies b\)-blocks paths,
Conclusion

- same gluing: \(\chi \geq (b-1)k \implies b\)-blocks paths,
- General oriented trees: same approach, harder gluing...
same gluing: $\chi \geq (b-1)k \implies b$-blocks paths,

General oriented trees: same approach, harder gluing...

Merci!
References

- Louigi Addario-Berry, Frédéric Havet, Cláudia Linhares Sales, Bruce Reed, Stéphan Thomassé, **Oriented trees in digraphs**, *Discrete Mathematics*, Volume 313, Issue 8, 2013, 967-974.