Oriented trees in digraphs of high chromatic number

Amadeus Reinald LIRMM, Université de Montpellier, CNRS

joint work with Stéphane Bessy, Daniel Gonçalves

Journées Graphes et Algorithmes 21 Novembre 2023, Lyon

Question

Question

What structures necessarily appear in (di)graphs of "high" chromatic number?

• minors, Hadwiger's conjecture: $\chi \ge t \rightarrow K_t$

Question

- minors, Hadwiger's conjecture: $\chi \ge t \rightarrow K_t$
- induced subgraphs, Gyárfás-Sumner conjecture: $\chi \ge f(t, T) \rightarrow K_t$ or T

Question

- minors, Hadwiger's conjecture: $\chi \ge t \rightarrow K_t$
- induced subgraphs, Gyárfás-Sumner conjecture: $\chi \ge f(t, T) \rightarrow K_t$ or T
- subgraphs: solved, trivial (next slide)

Question

- minors, Hadwiger's conjecture: $\chi \ge t \rightarrow K_t$
- induced subgraphs, Gyárfás-Sumner conjecture: $\chi \ge f(t, T) \rightarrow K_t$ or T
- subgraphs: solved, trivial (next slide)
- subdigraphs: this talk!

Subtrees in graphs of large chromatic number

Question

Given H, is there some k s.t. $\chi(G) \ge k \implies G$ contains H as a subgraph?

Subtrees in graphs of large chromatic number

Question

Given H, is there some k s.t. $\chi(G) \ge k \implies G$ contains H as a subgraph?

Theorem (Erdős, Hajnal '1966) There exist graphs of arbitrarily large girth and χ .

Subtrees in graphs of large chromatic number

Question

Given H, is there some k s.t. $\chi(G) \ge k \implies G$ contains H as a subgraph?

Theorem (Erdős, Hajnal '1966) There exist graphs of arbitrarily large girth and χ .

 \hookrightarrow if *H* is not a tree, **no**.

,

Conclusion

χ -vertex trees in simple graphs

Graph G: find trees on $\chi(G)$ vertices as subgraphs, tight.

• start with any colouring

,

χ -vertex trees in simple graphs

- start with any colouring
- stack left,

- start with any colouring
- stack left, still $\geq \chi$ classes (independent sets)

- start with any colouring
- stack left, still $\geq \chi$ classes (independent sets)
- class *i*: at least one neighbour in j < i

- start with any colouring
- stack left, still $\geq \chi$ classes (independent sets)
- class *i*: at least one neighbour in j < i

- start with any colouring
- stack left, still $\geq \chi$ classes (independent sets)
- class *i*: at least one neighbour in j < i

- start with any colouring
- stack left, still $\geq \chi$ classes (independent sets)
- class *i*: at least one neighbour in j < i

- start with any colouring
- stack left, still $\geq \chi$ classes (independent sets)
- class *i*: at least one neighbour in j < i build T

- start with any colouring
- stack left, still $\geq \chi$ classes (independent sets)
- class *i*: at least one neighbour in j < i build T

- start with any colouring
- stack left, still $\geq \chi$ classes (independent sets)
- class *i*: at least one neighbour in j < i build T

- start with any colouring
- stack left, still $\geq \chi$ classes (independent sets)
- class *i*: at least one neighbour in j < i build T

- start with any colouring
- stack left, still $\geq \chi$ classes (independent sets)
- class *i*: at least one neighbour in j < i build T

- start with any colouring
- stack left, still $\geq \chi$ classes (independent sets)
- class *i*: at least one neighbour in j < i build T

- start with any colouring
- stack left, still $\geq \chi$ classes (independent sets)
- class *i*: at least one neighbour in j < i build T

χ -vertex trees in simple graphs

- start with any colouring
- stack left, still $\geq \chi$ classes (independent sets)
- class *i*: at least one neighbour in j < i build T

Graph G: find trees on $\chi(G)$ vertices as subgraphs, tight.

- start with any colouring
- stack left, still $\geq \chi$ classes (independent sets)
- class *i*: at least one neighbour in j < i build T

• What if we orient G? No guarantees on directions of arcs...

χ -vertex trees in simple graphs

- start with any colouring
- stack left, still $\geq \chi$ classes (independent sets)
- class *i*: at least one neighbour in j < i build T

- What if we orient G? No guarantees on directions of arcs...
- This talk: find k-vertex oriented subtrees when $\chi \ge f(k)$.

Burr's conjecture

Conjecture (Burr '80) If a digraph D satisfies $\chi(D) \ge 2k - 2$, then D contains every oriented tree on k vertices as a subgraph.

Burr's conjecture

Conjecture (Burr '80) If a digraph D satisfies $\chi(D) \ge 2k - 2$, then D contains every oriented tree on k vertices as a subgraph.

• Tight : diregular K_{2k-3} has no S_k^+ (ex: k = 4),

Conclusion

Burr's conjecture

Conjecture (Burr '80) If a digraph D satisfies $\chi(D) \ge 2k - 2$, then D contains every oriented tree on k vertices as a subgraph.

- Tight : diregular K_{2k-3} has no S_k^+ (ex: k = 4),
- $(k-1)^2$ suffices for k-vertex trees [Burr '80].

Conclusion

Burr's conjecture

Conjecture (Burr '80) If a digraph D satisfies $\chi(D) \ge 2k - 2$, then D contains every oriented tree on k vertices as a subgraph.

- Tight : diregular K_{2k-3} has no S_k^+ (ex: k = 4),
- $(k-1)^2$ suffices for k-vertex trees [Burr '80].

Theorem (Addario-Berry, Havet, Linhares Sales, Reed, Thomassé '13) If a digraph D satisfies $\chi(D) \ge \frac{k^2}{2} - \frac{k}{2} + 1$, then D contains every oriented tree on k vertices.

Conclusion

Burr's conjecture

Conjecture (Burr '80) If a digraph D satisfies $\chi(D) \ge 2k - 2$, then D contains every oriented tree on k vertices as a subgraph.

- Tight : diregular K_{2k-3} has no S_k^+ (ex: k = 4),
- $(k-1)^2$ suffices for k-vertex trees [Burr '80].

Theorem (Addario-Berry, Havet, Linhares Sales, Reed, Thomassé '13) If a digraph D satisfies $\chi(D) \ge \frac{k^2}{2} - \frac{k}{2} + 1$, then D contains every oriented tree on k vertices.

• $\geq 2k - 2 \implies$ paths, two-blocks paths*, diameter 3 trees

Conclusion

Burr's conjecture

Conjecture (Burr '80) If a digraph D satisfies $\chi(D) \ge 2k - 2$, then D contains every oriented tree on k vertices as a subgraph.

- Tight : diregular K_{2k-3} has no S_k^+ (ex: k = 4),
- $(k-1)^2$ suffices for k-vertex trees [Burr '80].

Theorem (Addario-Berry, Havet, Linhares Sales, Reed, Thomassé '13) If a digraph D satisfies $\chi(D) \ge \frac{k^2}{2} - \frac{k}{2} + 1$, then D contains every oriented tree on k vertices.

- $\geq 2k 2 \implies$ paths, two-blocks paths*, diameter 3 trees
- $\geq 10k \implies$ antidirected trees, ≤ 4 blocks paths

Conclusion

Our results

Theorem (Bessy, Gonçalves, R. '23+) If a digraph D satisfies $\chi(D) \ge 5k\sqrt{k}$, then D contains every oriented tree on k vertices.

Theorem (Bessy, Gonçalves, R. '23+) If a digraph D satisfies $\chi(D) \ge 5k\sqrt{k}$, then D contains every oriented tree on k vertices.

In particular,

• $\chi(D) \ge (b-1)k \implies D$ contains k-paths with b blocks $(b \ge 2)$.

Theorem (Bessy, Gonçalves, R. '23+) If a digraph D satisfies $\chi(D) \ge 5k\sqrt{k}$, then D contains every oriented tree on k vertices.

In particular,

- $\chi(D) \ge (b-1)k \implies D$ contains k-paths with b blocks $(b \ge 2)$.
- $\chi(D) \ge 3k\sqrt{k} \implies D$ contains k-arborescences.

Theorem (Bessy, Gonçalves, R. '23+) If a digraph D satisfies $\chi(D) \ge 5k\sqrt{k}$, then D contains every oriented tree on k vertices.

In particular,

- $\chi(D) \ge (b-1)k \implies D$ contains k-paths with b blocks $(b \ge 2)$.
- $\chi(D) \ge 3k\sqrt{k} \implies D$ contains k-arborescences. This talk!

Theorem (Bessy, Gonçalves, R. '23+) If a digraph D satisfies $\chi(D) \ge 5k\sqrt{k}$, then D contains every oriented tree on k vertices.

In particular,

- $\chi(D) \ge (b-1)k \implies D$ contains k-paths with b blocks $(b \ge 2)$.
- $\chi(D) \ge 3k\sqrt{k} \implies D$ contains k-arborescences. This talk!

Definition An out-arborescence is an oriented tree with:

- unique source u, root
- $\forall v \neq u$, one path from u to v.

Theorem (Bessy, Gonçalves, R. '23+) If a digraph D satisfies $\chi(D) \ge 5k\sqrt{k}$, then D contains every oriented tree on k vertices.

In particular,

- $\chi(D) \ge (b-1)k \implies D$ contains k-paths with b blocks $(b \ge 2)$.
- $\chi(D) \ge 3k\sqrt{k} \implies D$ contains k-arborescences. This talk!

Definition An out-arborescence is an oriented tree with:

- unique source u, root
- $\forall v \neq u$, one path from u to v.

Conclusion

Gluing leaves

Lemma (B '80; A-B,H,L-S,R,T '13)

• Assume $\chi(D) \ge c \implies k$ -vertex T,

Conclusion

Gluing leaves

Lemma (B '80; A-B,H,L-S,R,T '13)

- Assume $\chi(D) \ge c \implies k$ -vertex T,
- then $\chi(D) \ge c + 2(k+\ell) \implies T$ with ℓ out (/in) leaves glued to T.

Conclusion

Gluing leaves

Lemma (B '80; A-B,H,L-S,R,T '13)

- Assume $\chi(D) \ge c \implies k$ -vertex T,
- then $\chi(D) \ge c + 2(k + \ell) \implies T$ with ℓ out (/in) leaves glued to T.

 $\chi(D) \ge c + 2(k+\ell)$

Conclusion

Gluing leaves

Lemma (B '80; A-B,H,L-S,R,T '13)

- Assume $\chi(D) \ge c \implies k$ -vertex T,
- then $\chi(D) \ge c + 2(k + \ell) \implies T$ with ℓ out (/in) leaves glued to T.

Conclusion

Gluing leaves

Lemma (B '80; A-B,H,L-S,R,T '13)

- Assume $\chi(D) \ge c \implies k$ -vertex T,
- then $\chi(D) \ge c + 2(k + \ell) \implies T$ with ℓ out (/in) leaves glued to T.

Conclusion

Gluing leaves

Lemma (B '80; A-B,H,L-S,R,T '13)

- Assume $\chi(D) \ge c \implies k$ -vertex T,
- then $\chi(D) \ge c + 2(k + \ell) \implies T$ with ℓ out (/in) leaves glued to T.

Conclusion

Gluing leaves

Lemma (B '80; A-B,H,L-S,R,T '13)

- Assume $\chi(D) \ge c \implies k$ -vertex T,
- then $\chi(D) \ge c + 2(k+\ell) \implies T$ with ℓ out (/in) leaves glued to T.

Conclusion

Gluing leaves

Lemma (B '80; A-B,H,L-S,R,T '13)

- Assume $\chi(D) \ge c \implies k$ -vertex T,
- then $\chi(D) \ge c + 2(k+\ell) \implies T$ with ℓ out (/in) leaves glued to T.

 $\hookrightarrow O(k^2).$

• Last technique: good for lots of leaves,

- Last technique: good for lots of leaves,
- but adding a directed path $\overrightarrow{P_{\ell}}$ costs $O(k\ell)$...

- Last technique: good for lots of leaves,
- but adding a directed path $\overrightarrow{P_{\ell}}$ costs $O(k\ell)$...

Lemma (Bessy, Gonçalves, R. '23+)

• Assume $\chi(D) \ge c \implies k$ -vertex tree T.

- Last technique: good for lots of leaves,
- but adding a directed path $\overrightarrow{P_{\ell}}$ costs $O(k\ell)$...

- Assume $\chi(D) \ge c \implies k$ -vertex tree T.
- Then $\chi(D) \ge c + k + 2\ell \implies T$ glued with a $\overrightarrow{P}_{\ell}$.

Gluing a path

- Last technique: good for lots of leaves,
- but adding a directed path $\overrightarrow{P_{\ell}}$ costs $O(k\ell)$...

- Assume $\chi(D) \ge c \implies k$ -vertex tree T.
- Then $\chi(D) \ge c + k + 2\ell \implies T$ glued with a \vec{P}_{ℓ} .

Gluing a path

- Last technique: good for lots of leaves,
- but adding a directed path $\overrightarrow{P_{\ell}}$ costs $O(k\ell)$...

- Assume $\chi(D) \ge c \implies k$ -vertex tree T.
- Then $\chi(D) \ge c + k + 2\ell \implies T$ glued with a $\overrightarrow{P}_{\ell}$.

Gluing a path

- Last technique: good for lots of leaves,
- but adding a directed path $\overrightarrow{P_{\ell}}$ costs $O(k\ell)$...

- Assume $\chi(D) \ge c \implies k$ -vertex tree T.
- Then $\chi(D) \ge c + k + 2\ell \implies T$ glued with a $\overrightarrow{P}_{\ell}$.

 $\chi(D) \ge c + k + 2\ell$

Gluing a path

- Last technique: good for lots of leaves,
- but adding a directed path $\overrightarrow{P_{\ell}}$ costs $O(k\ell)$...

Lemma (Bessy, Gonçalves, R. '23+)

- Assume $\chi(D) \ge c \implies k$ -vertex tree T.
- Then $\chi(D) \ge c + k + 2\ell \implies T$ glued with a $\overrightarrow{P}_{\ell}$.

 $\chi(D) \ge c + k + 2\ell$

Gluing a path

- Last technique: good for lots of leaves,
- but adding a directed path $\overrightarrow{P_{\ell}}$ costs $O(k\ell)$...

Lemma (Bessy, Gonçalves, R. '23+)

- Assume $\chi(D) \ge c \implies k$ -vertex tree T.
- Then $\chi(D) \ge c + k + 2\ell \implies T$ glued with a $\overrightarrow{P}_{\ell}$.

 $\chi(D) \ge c + k + 2\ell$

Gluing a path

- Last technique: good for lots of leaves,
- but adding a directed path $\overrightarrow{P_{\ell}}$ costs $O(k\ell)$...

- Assume $\chi(D) \ge c \implies k$ -vertex tree T.
- Then $\chi(D) \ge c + k + 2\ell \implies T$ glued with a $\overrightarrow{P}_{\ell}$.

 $\chi(D) \ge c + k + 2\ell$

Tools for induction

• We can glue leaves or a path to T by paying O(k) colours

Tools for induction

- We can glue leaves or a path to T by paying O(k) colours
- Do this a minimal number of times...

Tools for induction

- We can glue leaves or a path to T by paying O(k) colours
- Do this a minimal number of times...

Observation: an out-arborescence contains either $\geq \sqrt{k}$ out-leaves, or can be partitionned into $\leq \sqrt{k}$ paths.

Tools for induction

- We can glue leaves or a path to T by paying O(k) colours
- Do this a minimal number of times...

Observation: an out-arborescence contains either $\geq \sqrt{k}$ out-leaves, or can be partitionned into $\leq \sqrt{k}$ paths.

Induction

• If $\leq \sqrt{k}$ leaves, **done**: pay $\frac{3k}{k}$ for each of the \sqrt{k} paths

Tools for induction

- We can glue leaves or a path to T by paying O(k) colours
- Do this a minimal number of times...

Observation: an out-arborescence contains either $\geq \sqrt{k}$ out-leaves, or can be partitionned into $\leq \sqrt{k}$ paths.

Induction

- If $\leq \sqrt{k}$ leaves, **done**: pay $\frac{3k}{k}$ for each of the \sqrt{k} paths
- If $\geq \sqrt{k}$ out-leaves, pay 2k to add them,

Tools for induction

- We can glue leaves or a path to T by paying O(k) colours
- Do this a minimal number of times...

Observation: an out-arborescence contains either $\geq \sqrt{k}$ out-leaves, or can be partitionned into $\leq \sqrt{k}$ paths.

Induction

- If $\leq \sqrt{k}$ leaves, **done**: pay $\frac{3k}{k}$ for each of the \sqrt{k} paths
- If $\geq \sqrt{k}$ out-leaves, pay 2k to add them, induct...

Tools for induction

- We can glue leaves or a path to T by paying O(k) colours
- Do this a minimal number of times...

Observation: an out-arborescence contains either $\geq \sqrt{k}$ out-leaves, or can be partitionned into $\leq \sqrt{k}$ paths.

Induction

- If $\leq \sqrt{k}$ leaves, **done**: pay $\frac{3k}{k}$ for each of the \sqrt{k} paths
- If $\geq \sqrt{k}$ out-leaves, pay 2k to add them, induct...

 $\chi(D) \ge 3k\sqrt{k} \implies D$ contains k-arborescences

• same gluing: $\chi \ge (b-1)k \implies b$ -blocks paths,

- same gluing: $\chi \ge (b-1)k \implies b$ -blocks paths,
- General oriented trees: same approach, harder gluing...

- same gluing: $\chi \ge (b-1)k \implies b$ -blocks paths,
- General oriented trees: same approach, harder gluing...

Merci!

References

- S. A. Burr, Subtrees of directed graphs and hypergraphs, Proceedings of the Eleventh Southeastern Conference on Combinatorics, Graph Theory and Computing, Boca Raton, Congr. Numer., 28 (1980), 227–239.
- Louigi Addario-Berry, Frédéric Havet, Cláudia Linhares Sales, Bruce Reed, Stéphan Thomassé, **Oriented trees in digraphs**, *Discrete Mathematics*, Volume 313, Issue 8, 2013, 967-974.