Un problème extrémal sur les multigraphes localement creux

Victor Falgas–Ravry Université d'Umeå

Journées Graphes & Algorithmes Lyon, Novembre 2023

À latitude extrémale, problèmes extrémaux...

Le théorème de Turán

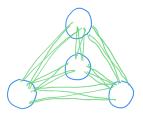
Combien d'arêtes un graphe d'ordre n peut-il contenir s'il n'admet pas K_{r+1} comme sous-graphe?

Le théorème de Turán

Combien d'arêtes un graphe d'ordre n peut-il contenir s'il n'admet pas K_{r+1} comme sous-graphe?

Théorème de Turán (1941)

Soit G un graphe d'ordre n n'admettant pas K_{r+1} comme sous-graphe. Alors $e(G) \leq e(T_r(n))$.



Ici, $T_r(n)$ dénote le graphe complet r-partis équilibré dit graphe de Turán. Ci-dessus, $T_4(n)$.

Le théorème de Turán

Théorème de Turán

Soit G un graphe d'ordre n n'admettant pas K_{r+1} comme sous-graphe. Alors $e(G) \leq e(T_r(n))$.

- Nombre de Turán:
 - $ex(n, \mathcal{F}) = max\{e(G): v(G) = n, F \not\leq G \ \forall F \in \mathcal{F}\}$
- Erdős-Stone-Simonovits: tous les graphes extrémaux sont 'proches' des graphes de Turán.
- Erdős–Kleitman–Rothschild: #{graphes d'ordre n sans K_{r+1} } = $2^{e(T_r(n))+o(n^2)}$.

Théorème de Turán et graphes localement creux

$$\mathcal{K}_{r+1} \not \leq G \quad \Leftrightarrow \quad \forall S \in \binom{V(G)}{r+1}, \ e(G[S]) \leq \binom{r+1}{2} - 1$$

Théorème de Turán et graphes localement creux

$$K_{r+1} \not \leq G \quad \Leftrightarrow \quad \forall S \in \binom{V(G)}{r+1}, \ e(G[S]) \leq \binom{r+1}{2} - 1$$

Définition

Un graphe G est (s, a)-creux si tout sous-graphe de G induit par s sommets contient au plus a arêtes.

Théorème de Turán, formulation alternative

Si G est un graphe d'ordre n qui est $(r+1, \binom{r+1}{2}-1)$ -creux, alors

$$e(G) \leq e(T_r(n)).$$

Théorème de Turán et graphes localement creux

Définition

Un graphe G est (s, a)-creux si tout sous-graphe de G induit par s sommets contient au plus a arêtes.

Théorème de Turán, formulation alternative

Si G est un graphe d'ordre n qui est $(r+1,\binom{r+1}{2}-1)$ -creux, alors

$$e(G) \leq e(T_r(n)).$$

Question (Erdős, 1964)

Combien d'arêtes un graphe d'ordre n peut-il contenir s'il est (s, a)-creux?

Multigraphes localement creux

Sujet aujourd'hui: une version de la question d'Erdős pour les **multigraphes**.

Multigraphes localement creux

Sujet aujourd'hui: une version de la question d'Erdős pour les **multigraphes**.

- Multigraphe: paire $G=(V,w), \ w: \binom{V}{2} \to \mathbb{Z}_{\geq 0}$ associant à chaque paire de sommets vv' un entier non-négatif w(vv') (multiplicité ou poids de vv')
- Étant donné $S \subseteq V$, on définit $e(G[S]) := \sum_{vv' \in \binom{S}{2}} w(vv')$.
- Un multigraphe G = (V, w) est (s, a)-creux si pour tout $S \in \binom{V}{s}$ on a $e(G[S]) \le a$.

Le problème de Mubayi-Terry

Définition

Étant donné
$$G = (V, w)$$
, soit $P(G) := \prod_{vv' \in \binom{V}{2}} w(vv')$.

Le problème de Mubayi-Terry

Définition

Étant donné
$$G = (V, w)$$
, soit $P(G) := \prod_{vv' \in \binom{V}{2}} w(vv')$.

Problème de Mubayi-Terry

Déterminer la valeur de

$$\mathrm{ex}_\Pi(n,s,a) := \max\Bigl\{P(G): \ v(G) = n, \ G \ \mathrm{est} \ (s,a) - \mathrm{creux}\Bigr\}.$$

- Introduit par Mubayi & Terry (2016).
- Motivation: énumération asymptotique des multigraphes (s, a)-creux, via la théorie des hypergraphes conteneurs (Erdős-Kleitman-Rothschild pour les multigraphes).

Problème de Mubayi-Terry: remarques préliminaires

- La moyenne géométrique extrémale des poids pour un multigraphe (s, a)-creux d'ordre n, $(\exp_{\Pi}(n, s, a))^{1/\binom{n}{2}}$, converge vers une limite $\exp_{\Pi}(s, a)$ quand $n \to \infty$.
- Si $m\binom{s}{2} \le a < (m+1)\binom{s}{2}$, où m est un entier positif, alors:

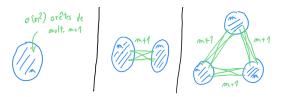
$$m \leq \exp(s, a) < m + 1.$$

• Cas particulier: si $a = m \binom{s}{2}$, alors $ex_{\Pi}(s, a) = m$.

Résultats de Mubayi-Terry

Théorème (Mubayi-Terry, 2019)

- $\operatorname{ex}_{\Pi}(s,a) = m \text{ si } m\binom{s}{2} \le a \le m\binom{s}{2} + s 2 \text{ pour } m \in \mathbb{Z}_{\ge 1}.$
- $\exp_{\Pi}(s, a)$ est atteinte par des constructions de type Turán si $(m+1)\binom{s}{2}-s/2 \leq a < (m+1)\binom{s}{2}$.

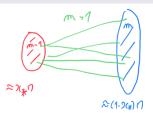


Constructions extrémales pour s=4, $a=m\binom{4}{2}+t$, où $t\in\{0,1,2\}$ (à gauche), t=4 (au centre), t=5 (à droite).

Conjecture de Mubayi-Terry

Conjecture de Mubayi-Terry

Pour $m \in \mathbb{Z}_{\geq 2}$ et n suffisament grand, $\operatorname{ex}_{\Pi}(n,4,m\binom{4}{2}+3)$ est atteinte par la construction ci-dessous.

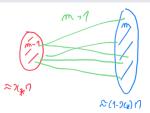


La taille optimale de la partie rouge est $x_{\star}n + O(1)$, où $x_{\star} = \frac{\log((m+1)/m)}{\log((m+1)^2/m(m-1))}$ est transcendental.

Conjecture de Mubayi-Terry

Théorème (Day-FR-Treglown, 2022)

Pour tout $m \ge 2$, $n \ge 30$, $\exp(n, 4, m\binom{4}{2} + 3)$ est atteinte par la construction ci-dessous.



La taille optimale de la partie rouge est $x_{\star}n + O(1)$, où $x_{\star} = \frac{\log((m+1)/m)}{\log((m+1)^2/m(m-1))}$ est transcendental.

Autre résultats avec Day et Treglown (2022)

- Échelle de résultats: $\exp_{\Pi}(5, m{5 \choose 2} + 5)$, $\exp_{\Pi}(6, m{6 \choose 2} + 7)$, ... sont égales à $\exp_{\Pi}(4, m{4 \choose 2} + 3)$.
- Détermination de ex(n, s, a) pour tous les cas 'de type Turán' où $a = m\binom{s}{2} + ex(s, K_r)$.
- Construction générale dont nous conjecturons l'extrémalité pour $ex_{\Pi}(s, a)$ pour de nombreuses paires (s, a).

Résultats (encore) plus récents

- Collaboration avec Vojtěch Dvorak, Adva Mond et Victor Souza.
- Nombre infini de cas de la 'conjecture générale'.
- Détermination de l'entier t tel que $\exp_{\Pi}(s, 2\binom{s}{2} + t) = 2$, $\exp_{\Pi}(s, 2\binom{s}{2} + t + 1) > 2$.



Il reste du pain sur la planche...

De nombreux problèmes restent à résoudre:

- 'Conjecture générale' (défi technique: structures extrémales complexes).
- Cas $a = m\binom{s}{2} + t$ où m est 'trop petit' pour permettre l'existence des constructions de la 'conjecture générale'. (Même difficulté pour la variante additive du problème.)

Il reste du pain sur la planche...

De nombreux problèmes restent à résoudre:

- 'Conjecture générale' (défi technique: structures extrémales complexes).
- Cas $a = m\binom{s}{2} + t$ où m est 'trop petit' pour permettre l'existence des constructions de la 'conjecture générale'. (Même difficulté pour la variante additive du problème.)

Merci de votre attention!