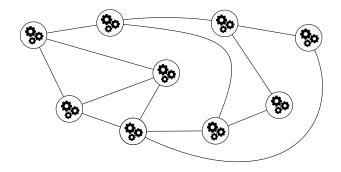
Certification locale de propriétés locales

Nicolas Bousquet, Laurent Feuilloley, Sébastien Zeitoun

21 novembre 2023

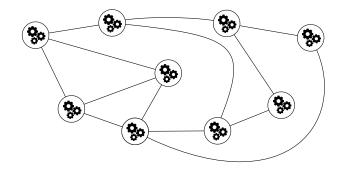
Contexte : calcul distribué

 $\label{eq:model} \mbox{Mod\'elisation}: \mbox{ graphe, } \left\{ \begin{array}{l} \mbox{sommets} = \mbox{unit\'es de calcul} \\ \mbox{ar\^etes} = \mbox{canaux de communication} \end{array} \right.$



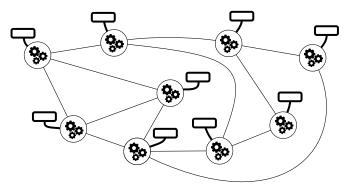
Contexte : calcul distribué

 $\label{eq:model} \mbox{Mod\'elisation}: \mbox{ graphe, } \left\{ \begin{array}{l} \mbox{sommets} = \mbox{unit\'es} \mbox{ de calcul} \\ \mbox{ar\^etes} = \mbox{canaux} \mbox{ de communication} \end{array} \right.$



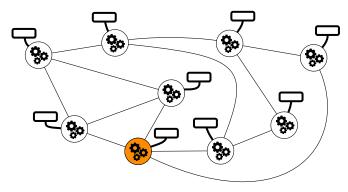
Contexte : calcul distribué

 $\label{eq:model} \mbox{Mod\'elisation}: \mbox{ graphe, } \left\{ \begin{array}{l} \mbox{sommets} = \mbox{unit\'es} \mbox{ de calcul} \\ \mbox{ar\^etes} = \mbox{canaux} \mbox{ de communication} \end{array} \right.$



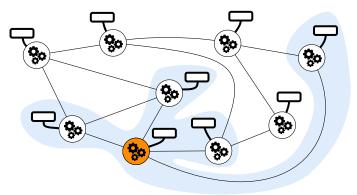
Contexte : calcul distribué

 $\label{eq:model} \mbox{Mod\'elisation}: \mbox{ graphe, } \left\{ \begin{array}{l} \mbox{sommets} = \mbox{unit\'es} \mbox{ de calcul} \\ \mbox{ar\^etes} = \mbox{canaux} \mbox{ de communication} \end{array} \right.$



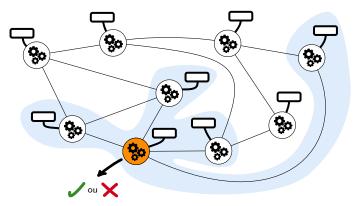
Contexte : calcul distribué

 $\label{eq:model} \mbox{Mod\'elisation}: \mbox{ graphe, } \left\{ \begin{array}{l} \mbox{sommets} = \mbox{unit\'es} \mbox{ de calcul} \\ \mbox{ar\^etes} = \mbox{canaux} \mbox{ de communication} \end{array} \right.$



Contexte : calcul distribué

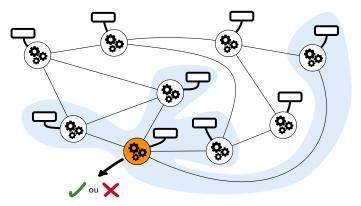
 $\label{eq:model} \mbox{Mod\'elisation}: \mbox{ graphe, } \left\{ \begin{array}{l} \mbox{sommets} = \mbox{unit\'es} \mbox{ de calcul} \\ \mbox{ar\^etes} = \mbox{canaux} \mbox{ de communication} \end{array} \right.$



Contexte : calcul distribué

 $\label{eq:model} \mbox{Mod\'elisation}: \mbox{ graphe, } \left\{ \begin{array}{l} \mbox{sommets} = \mbox{unit\'es} \mbox{ de calcul} \\ \mbox{ar\^etes} = \mbox{canaux} \mbox{ de communication} \end{array} \right.$

Objectif : vérifier localement une propriété du graphe, à l'aide de certificats

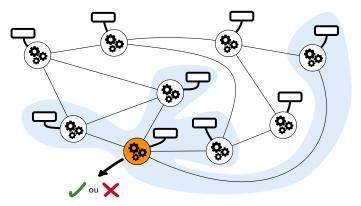


Graphe (globalement) accepté \iff tous les sommets acceptent (consensus)

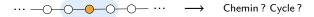
Contexte : calcul distribué

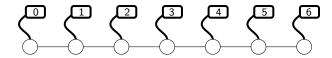
 $\label{eq:model} \mbox{Mod\'elisation}: \mbox{ graphe, } \left\{ \begin{array}{l} \mbox{sommets} = \mbox{unit\'es} \mbox{ de calcul} \\ \mbox{ar\^etes} = \mbox{canaux} \mbox{ de communication} \end{array} \right.$

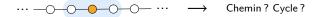
Objectif : vérifier localement une propriété du graphe, à l'aide de certificats

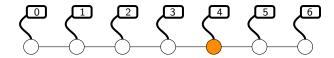


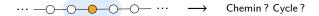
Graphe (globalement) accepté \iff tous les sommets acceptent (consensus) G vérifie $\mathcal{P} \iff$ il existe une assignation des certificats tel que G soit accepté

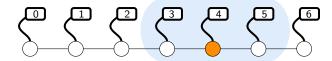


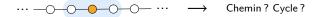


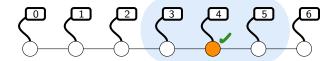






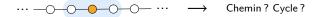


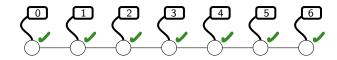


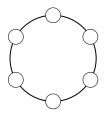




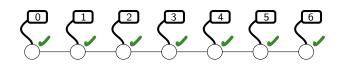


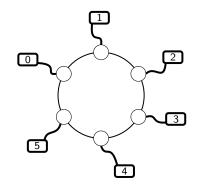




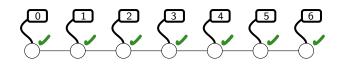


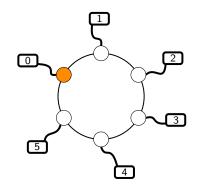


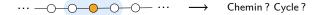


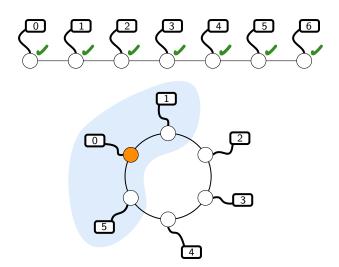


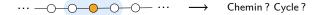


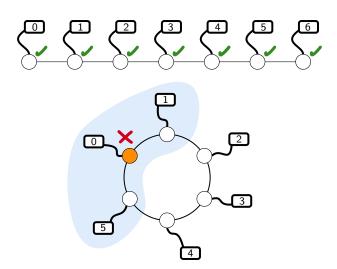


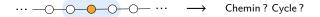


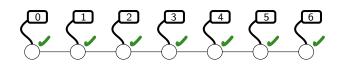


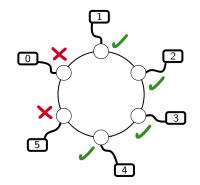












Paramètre usuel : n (nombre de sommets dans le graphe)

Paramètre usuel : n (nombre de sommets dans le graphe)

Taille optimale $\leq O(n^2)$ pour n'importe quelle propriété

Paramètre usuel : n (nombre de sommets dans le graphe)

Taille optimale $\leq O(n^2)$ pour n'importe quelle propriété

$ ilde{\Theta}(n^2)$	$\Theta(\log n)$

Paramètre usuel : n (nombre de sommets dans le graphe)

Taille optimale $\leq O(n^2)$ pour n'importe quelle propriété

$\tilde{\Theta}(n^2)$	$\Theta(\log n)$
Non-3-colorabilitéAutomorphisme non trivial	

Paramètre usuel : n (nombre de sommets dans le graphe)

Taille optimale $\leq O(n^2)$ pour n'importe quelle propriété

$\tilde{\Theta}(n^2)$	$\Theta(\log n)$
Non-3-colorabilitéAutomorphisme non trivial	 Chemins Arbres couvrants Nombre impair de sommets Graphes planaires

Paramètre usuel : n (nombre de sommets dans le graphe)

Taille optimale $\leq O(n^2)$ pour n'importe quelle propriété

$\tilde{\Theta}(n^2)$	$\Theta(\log n)$	Indépendant de <i>n</i>
 Non-3-colorabilité Automorphisme non trivial 	 Chemins Arbres couvrants Nombre impair de sommets Graphes planaires 	 k-colorabilité Ensemble dominant à distance t Couplage parfait

Paramètre usuel : n (nombre de sommets dans le graphe)

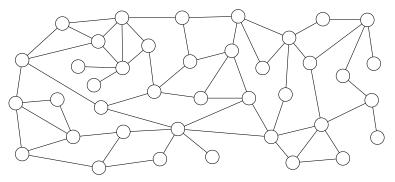
Taille optimale $\leq O(n^2)$ pour n'importe quelle propriété

$ ilde{\Theta}(n^2)$	$\Theta(\log n)$	Indépendant de <i>n</i>
■ Non-3-colorabilité	Chemins	■ <i>k</i> -colorabilité
Automorphisme non trivial	Arbres couvrantsNombre impair de sommets	Ensemble dominant à distance t
		■ Couplage parfait
	 Graphes planaires 	·

Ensembles dominants à distance t

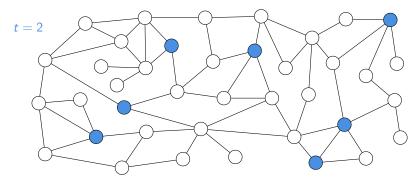
Ensembles dominants à distance t

S dominant à distance $t \iff \forall v \in V, \exists u \in S, d(u, v) \leqslant t$

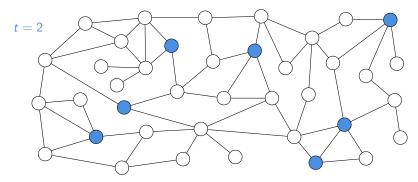


Ensembles dominants à distance t

S dominant à distance $t \iff \forall v \in V, \exists u \in S, d(u, v) \leqslant t$

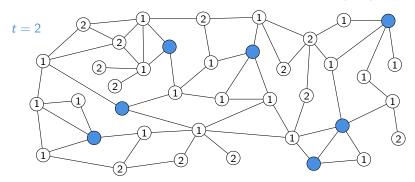


S dominant à distance $t \iff \forall v \in V, \exists u \in S, d(u, v) \leqslant t$



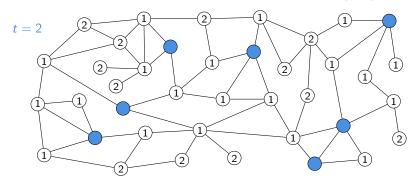
Certification triviale avec t certificats (certificat = distance à S).

S dominant à distance $t \iff \forall v \in V, \exists u \in S, d(u, v) \leqslant t$



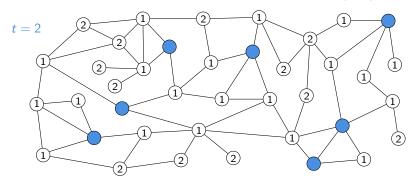
Certification triviale avec t certificats (certificat = distance à S).

S dominant à distance $t \iff \forall v \in V, \exists u \in S, d(u, v) \leqslant t$



Certification triviale avec t certificats (certificat = distance à S). Optimal?

S dominant à distance $t \iff \forall v \in V, \exists u \in S, d(u, v) \leqslant t$



Certification triviale avec t certificats (certificat = distance à S). Optimal? Non.

Théorème (Bousquet, Feuilloley, Z.)

 $\Theta(\sqrt{t})$ certificats sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

Théorème (Bousquet, Feuilloley, Z.)

 $\Theta(\sqrt{t})$ certificats sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

Théorème (Bousquet, Feuilloley, Z.)

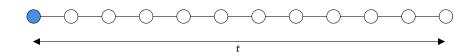
 $\Theta(\sqrt{t})$ certificats sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

Borne inf : $\Omega(\sqrt{t})$ sont nécessaires.

Théorème (Bousquet, Feuilloley, Z.)

 $\Theta(\sqrt{t})$ certificats sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

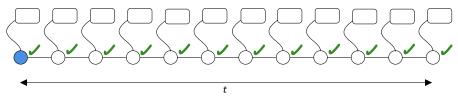
Borne inf : $\Omega(\sqrt{t})$ sont nécessaires.



Théorème (Bousquet, Feuilloley, Z.)

 $\Theta(\sqrt{t})$ certificats sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

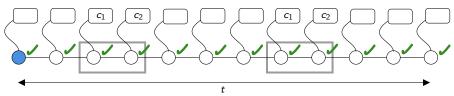
Borne inf : $\Omega(\sqrt{t})$ sont nécessaires.



Théorème (Bousquet, Feuilloley, Z.)

 $\Theta(\sqrt{t})$ certificats sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

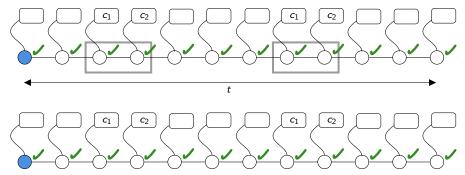
Borne inf : $\Omega(\sqrt{t})$ sont nécessaires.



Théorème (Bousquet, Feuilloley, Z.)

 $\Theta(\sqrt{t})$ certificats sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

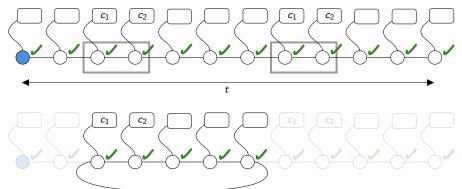
Borne inf : $\Omega(\sqrt{t})$ sont nécessaires.



Théorème (Bousquet, Feuilloley, Z.)

 $\Theta(\sqrt{t})$ certificats sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

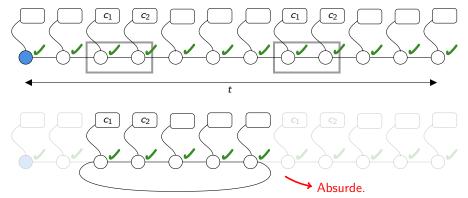
Borne inf : $\Omega(\sqrt{t})$ sont nécessaires.



Théorème (Bousquet, Feuilloley, Z.)

 $\Theta(\sqrt{t})$ certificats sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

Borne inf : $\Omega(\sqrt{t})$ sont nécessaires.



Théorème (Bousquet, Feuilloley, Z.)

 $\Theta(\sqrt{t})$ certificats sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

Borne sup : $O(\sqrt{t})$ sont suffisants.

Théorème (Bousquet, Feuilloley, Z.)

 $\Theta(\sqrt{t})$ certificats sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

Borne sup : $O(\sqrt{t})$ sont suffisants.

Idée : utiliser les mots de De Bruijn.

Définition

Un mot de De Bruijn sur l'alphabet $\{1,\ldots,\lceil\sqrt{t}\rceil\}$ est un mot ω de longueur t tel que chaque mot de longueur 2 apparaît au plus une fois comme facteur de ω .

Théorème (Bousquet, Feuilloley, Z.)

 $\Theta(\sqrt{t})$ certificats sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

Borne sup : $O(\sqrt{t})$ sont suffisants.

Idée : utiliser les mots de De Bruijn.

Définition

Un mot de De Bruijn sur l'alphabet $\{1,\ldots,\lceil\sqrt{t}\rceil\}$ est un mot ω de longueur t tel que chaque mot de longueur 2 apparaît au plus une fois comme facteur de ω .

Certification :
$$d(u, S) = i \longrightarrow u$$
 reçoit le certificat $(\omega_i, i \mod 3)$ $(S = \text{sommets marqués})$

Théorème (Bousquet, Feuilloley, Z.)

 $\Theta(\sqrt{t})$ certificats sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

Borne sup : $O(\sqrt{t})$ sont suffisants.

Idée : utiliser les mots de De Bruijn.

Définition

Un mot de De Bruijn sur l'alphabet $\{1,\ldots,\lceil\sqrt{t}\rceil\}$ est un mot ω de longueur t tel que chaque mot de longueur 2 apparaît au plus une fois comme facteur de ω .

Certification : $d(u, S) = i \longrightarrow u$ reçoit le certificat $(\omega_i, i \mod 3)$

(S = sommets marqués)

Théorème (Bousquet, Feuilloley, Z.)

 $\Theta(\sqrt{t})$ certificats sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

Borne sup : $O(\sqrt{t})$ sont suffisants.

Idée : utiliser les mots de De Bruijn.

Définition

Un mot de De Bruijn sur l'alphabet $\{1,\ldots,\lceil\sqrt{t}\rceil\}$ est un mot ω de longueur t tel que chaque mot de longueur 2 apparaît au plus une fois comme facteur de ω .

Certification : $d(u, S) = i \longrightarrow u$ reçoit le certificat $(\omega_i, i \mod 3)$

(S = sommets marqués)

Théorème (Bousquet, Feuilloley, Z.)

 $\Theta(\sqrt{t})$ certificats sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

Borne sup : $O(\sqrt{t})$ sont suffisants.

Idée : utiliser les mots de De Bruijn.

Définition

Un mot de De Bruijn sur l'alphabet $\{1,\ldots,\lceil\sqrt{t}\rceil\}$ est un mot ω de longueur t tel que chaque mot de longueur 2 apparaît au plus une fois comme facteur de ω .

Certification : $d(u, S) = i \longrightarrow u$ reçoit le certificat $(\omega_i, i \mod 3)$

Théorème (Bousquet, Feuilloley, Z.)

 $\Theta(\sqrt{t})$ certificats sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

Borne sup : $O(\sqrt{t})$ sont suffisants.

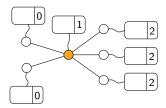
Idée : utiliser les mots de De Bruijn.

Définition

Un mot de De Bruijn sur l'alphabet $\{1,\ldots,\lceil\sqrt{t}\rceil\}$ est un mot ω de longueur t tel que chaque mot de longueur 2 apparaît au plus une fois comme facteur de ω .

Certification : $d(u, S) = i \longrightarrow u$ reçoit le certificat $(\omega_i, i \mod 3)$

(S = sommets marqués)



Théorème (Bousquet, Feuilloley, Z.)

 $\Theta(\sqrt{t})$ certificats sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

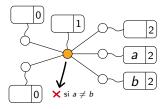
Borne sup : $O(\sqrt{t})$ sont suffisants.

Idée : utiliser les mots de De Bruijn.

Définition

Un mot de De Bruijn sur l'alphabet $\{1,\ldots,\lceil\sqrt{t}\rceil\}$ est un mot ω de longueur t tel que chaque mot de longueur 2 apparaît au plus une fois comme facteur de ω .

Certification : $d(u, S) = i \longrightarrow u$ reçoit le certificat $(\omega_i, i \mod 3)$



Théorème (Bousquet, Feuilloley, Z.)

 $\Theta(\sqrt{t})$ certificats sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

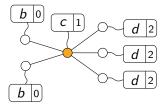
Borne sup : $O(\sqrt{t})$ sont suffisants.

Idée : utiliser les mots de De Bruijn.

Définition

Un mot de De Bruijn sur l'alphabet $\{1,\ldots,\lceil\sqrt{t}\rceil\}$ est un mot ω de longueur t tel que chaque mot de longueur 2 apparaît au plus une fois comme facteur de ω .

Certification : $d(u, S) = i \longrightarrow u$ reçoit le certificat $(\omega_i, i \mod 3)$



Théorème (Bousquet, Feuilloley, Z.)

 $\Theta(\sqrt{t})$ certificats sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

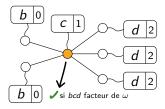
Borne sup : $O(\sqrt{t})$ sont suffisants.

Idée : utiliser les mots de De Bruijn.

Définition

Un mot de De Bruijn sur l'alphabet $\{1,\ldots,\lceil\sqrt{t}\rceil\}$ est un mot ω de longueur t tel que chaque mot de longueur 2 apparaît au plus une fois comme facteur de ω .

Certification : $d(u, S) = i \longrightarrow u$ reçoit le certificat $(\omega_i, i \mod 3)$



Théorème (Bousquet, Feuilloley, Z.)

 $\Theta(\sqrt{t})$ certificats sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

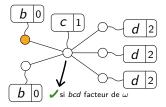
Borne sup : $O(\sqrt{t})$ sont suffisants.

Idée : utiliser les mots de De Bruijn.

Définition

Un mot de De Bruijn sur l'alphabet $\{1,\ldots,\lceil\sqrt{t}\rceil\}$ est un mot ω de longueur t tel que chaque mot de longueur 2 apparaît au plus une fois comme facteur de ω .

Certification : $d(u, S) = i \longrightarrow u$ reçoit le certificat $(\omega_i, i \mod 3)$



Théorème (Bousquet, Feuilloley, Z.)

 $\Theta(\sqrt{t})$ certificats sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

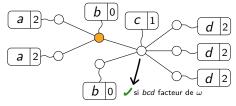
Borne sup : $O(\sqrt{t})$ sont suffisants.

Idée : utiliser les mots de De Bruijn.

Définition

Un mot de De Bruijn sur l'alphabet $\{1,\ldots,\lceil\sqrt{t}\rceil\}$ est un mot ω de longueur t tel que chaque mot de longueur 2 apparaît au plus une fois comme facteur de ω .

Certification : $d(u, S) = i \longrightarrow u$ reçoit le certificat $(\omega_i, i \mod 3)$ (S = sommets marqués)



Théorème (Bousquet, Feuilloley, Z.)

 $\Theta(\sqrt{t})$ certificats sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

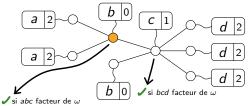
Borne sup : $O(\sqrt{t})$ sont suffisants.

Idée : utiliser les mots de De Bruijn.

Définition

Un mot de De Bruijn sur l'alphabet $\{1,\ldots,\lceil\sqrt{t}\rceil\}$ est un mot ω de longueur t tel que chaque mot de longueur 2 apparaît au plus une fois comme facteur de ω .

Certification : $d(u, S) = i \longrightarrow u$ reçoit le certificat $(\omega_i, i \mod 3)$ (S = sommets marqués)



Théorème (Bousquet, Feuilloley, Z.)

 $\Theta(\sqrt{t})$ certificats sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

Borne sup : $O(\sqrt{t})$ sont suffisants.

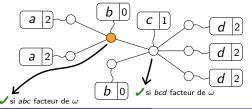
Idée : utiliser les mots de De Bruijn.

Définition

Un mot de De Bruijn sur l'alphabet $\{1,\ldots,\lceil\sqrt{t}\rceil\}$ est un mot ω de longueur t tel que chaque mot de longueur 2 apparaît au plus une fois comme facteur de ω .

Certification : $d(u, S) = i \longrightarrow u$ reçoit le certificat $(\omega_i, i \mod 3)$ (S = sommets marqués)

Vérification:



bc n'apparaît qu'une seule fois dans ω

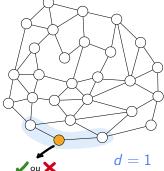
 $\omega =abcd.....$

Vue d'un sommet = toutes les informations

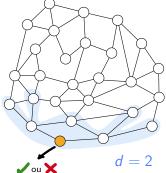
à distance $\leq d$:

- les sommets
- les arêtes
- les certificats

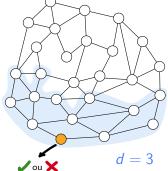
- les sommets
- les arêtes
- les certificats



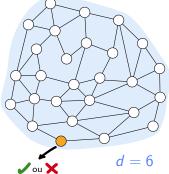
- les sommets
- les arêtes
- les certificats



- les sommets
- les arêtes
- les certificats



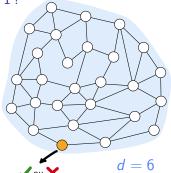
- les sommets
- les arêtes
- les certificats



Vue d'un sommet = toutes les informations à distance $\leq d$:

- les sommets
- les arêtes
- les certificats

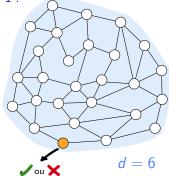
Question : Comment diminue la taille des certificats quand *d* augmente?



Vue d'un sommet = toutes les informations à distance $\leq d$:

- les sommets
- les arêtes
- les certificats

Question : Comment diminue la taille des certificats quand *d* augmente?



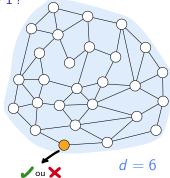
Théorème (Bousquet, Feuilloley, Z.)

Si les sommets voient à distance d, $\Theta(\log t/d)$ bits sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

Vue d'un sommet = toutes les informations à distance $\leq d$:

- les sommets
- les arêtes
- les certificats

Question : Comment diminue la taille des certificats quand *d* augmente?



Théorème (Bousquet, Feuilloley, Z.)

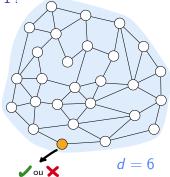
Si les sommets voient à distance d, $\Theta(\log t/d)$ bits sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

Preuve : en utilisant les mots de De Bruijn (similaire).

Vue d'un sommet = toutes les informations à distance $\leq d$:

- les sommets
- les arêtes
- les certificats

Question : Comment diminue la taille des certificats quand *d* augmente?



Théorème (Bousquet, Feuilloley, Z.)

Si les sommets voient à distance d, $\Theta(\log t/d)$ bits sont nécessaires et suffisants pour certifier un ensemble dominant à distance t.

Preuve : en utilisant les mots de De Bruijn (similaire).

Trade-off conjecture

Si s bits sont suffisants à distance 1, alors O(s/d) bits sont suffisants à distance d.

Colorabilité : certification triviale avec *k* certificats.

Colorabilité : certification triviale avec *k* certificats.

Théorème (Bousquet, Feuilloley, Z.)

Si les sommets voient à distance 1, k certificats sont nécessaires.

Colorabilité: certification triviale avec *k* certificats.

Théorème (Bousquet, Feuilloley, Z.)

Si les sommets voient à distance 1, k certificats sont nécessaires.

Théorème (Bousquet, Feuilloley, Z.)

Si les sommets voient à distance d, $\Omega(\log k/d)$ bits sont nécessaires.

Colorabilité : certification triviale avec *k* certificats.

Théorème (Bousquet, Feuilloley, Z.)

Si les sommets voient à distance 1, k certificats sont nécessaires.

Théorème (Bousquet, Feuilloley, Z.)

Si les sommets voient à distance d, $\Omega(\log k/d)$ bits sont nécessaires.

Question : si les sommets voient à distance d, $\Omega(\log k)$ bits sont-ils nécessaires ?

Colorabilité : certification triviale avec *k* certificats.

Théorème (Bousquet, Feuilloley, Z.)

Si les sommets voient à distance 1, k certificats sont nécessaires.

Théorème (Bousquet, Feuilloley, Z.)

Si les sommets voient à distance d, $\Omega(\log k/d)$ bits sont nécessaires.

Question : si les sommets voient à distance d, $\Omega(\log k)$ bits sont-ils nécessaires ?

Couplages parfaits : il existe une certification avec $O(\Delta)$ certificats.

Théorème (Bousquet, Feuilloley, Z.)

- $O(\log t)$ bits sont suffisants pour les graphes de treewidth t
- 2 bits sont suffisants pour les graphes planaires

Colorabilité : certification triviale avec *k* certificats.

Théorème (Bousquet, Feuilloley, Z.)

Si les sommets voient à distance 1, k certificats sont nécessaires.

Théorème (Bousquet, Feuilloley, Z.)

Si les sommets voient à distance d, $\Omega(\log k/d)$ bits sont nécessaires.

Question : si les sommets voient à distance d, $\Omega(\log k)$ bits sont-ils nécessaires ?

Couplages parfaits : il existe une certification avec $O(\Delta)$ certificats.

Théorème (Bousquet, Feuilloley, Z.)

- \bullet $O(\log t)$ bits sont suffisants pour les graphes de treewidth t
- 2 bits sont suffisants pour les graphes planaires

Théorème (Bousquet, Feuilloley, Z.)

 Δ certificats sont nécessaires pour certifier l'existence d'un couplage parfait.

Colorabilité : certification triviale avec *k* certificats.

Théorème (Bousquet, Feuilloley, Z.)

Si les sommets voient à distance 1, k certificats sont nécessaires.

Théorème (Bousquet, Feuilloley, Z.)

Si les sommets voient à distance d, $\Omega(\log k/d)$ bits sont nécessaires.

Question : si les sommets voient à distance d, $\Omega(\log k)$ bits sont-ils nécessaires ?

Couplages parfaits : il existe une certification avec $O(\Delta)$ certificats.

Théorème (Bousquet, Feuilloley, Z.)

- $O(\log t)$ bits sont suffisants pour les graphes de treewidth t
- 2 bits sont suffisants pour les graphes planaires

Théorème (Bousquet, Feuilloley, Z.)

 Δ certificats sont nécessaires pour certifier l'existence d'un couplage parfait.

Question : borne inf à distance d > 1?

Merci pour votre attention!