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Context



Wireless Networks

Wi-Fi Network :

Access Point

a b

c

d

S(G ): set of independent sets of G .

pv : Probability of access of node v .

pv =

∑
S∈S(G),v∈S θ

|S |∑
S∈S(G) θ

|S|

where θ >> 1 if a“physical parameter”1.

Example

pa =
θ2 + θ

θ2 + 4θ
pb =

θ

θ2 + 4θ

1Rafael Laufer and Leonard Kleinrock. “The Capacity of Wireless CSMA/CA Networks”. In:

IEEE/ACM Transactions on Networking 24.3 (2016)
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Wireless Networks

Wi-Fi Network :

Access Point

a b

c

d

When θ → +∞,

pv ∼
nb of max. indep. sets of G containing v

nb of max. indep. sets of G
:= p̃v

Example

p̃a = p̃c = 1 p̃b = p̃d = 0

BAD
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What’s the difference between a good and a bad network ?

Definition
A graph G = (V ,E ) is 1-extendable if any vertex belongs to an MIS.

Example

A 1-extendable graph.

a b

c

d

e

If G = (V ,E ) is 1-extendable, for any v ∈ V , p̃v > 0→ Minimal fairness, Good
5/22



What control do we have ?

If the graph is not 1-extendable, what can we do ?

Assign a channel to each vertex.

Example
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1-extendable and well-covered graphs

Definition (Berge 78)
A graph G is 1-extendable if each vertex belongs to an MIS.

Theorem (Bergé, Busson, Feghali, Watrigant 2022)
Testing 1-extendability is NP-hard, even on unit disk graph.

1-Extendable Partition

Input : A graph G = (V ,E ) and an integer k .

Question : Can we find a partition V = V1 ∪ ... ∪ Vk such that G [Vi ] is 1-extendable

for any 1 6 i 6 k ?

Theorem
1-Extendable k-Partition is NP-hard for any fixed k .
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Notations

χ1-ext(G ) : smallest integer k such that G has a partition into k 1-extendable induced

subgraphs.
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Structural results



Unit disk graphs : Model for wireless networks

Definition
A graph G = (V ,E ) is a unit disk graph if there exists a mapping f : V → R2 such

that uv ∈ E if, and only if, ‖f (u)− f (v)‖ 6 1.

Theorem
For any unit disk graph G , χ1-ext(G ) 6 7.
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Extremal properties of χ1-ext

Theorem
For any graph G with n vertices, χ1-ext(G ) 6 2

√
n.

11/22



Extremal properties of χ1-ext

Lemma
For any graph G , χ1-ext(G ) 6 α(G ).

Proof.
If α(G ) = 1, then G is a clique and χ1-ext(G ) = 1. If α(G ) > 1, let S be the set of

vertices of G that are in an MIS. Notice that :

• G [S ] is 1-extendable ;

• α(G − S) 6 α(G )− 1.

By induction hypothesis, χ1-ext(G − S) 6 α(G )− 1 and use one color for S .
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Extremal properties of χ1-ext

Theorem
For any graph G with n vertices, χ1-ext(G ) 6 2

√
n.

Proof.
If α(G ) >

√
n, extract an MIS S , use one color for S and recursively color G − S .

If α(G ) 6
√
n, use α(G ) colors with the previous lemma
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Lower bound

Is O(
√
n) optimal ? Consider the following complete multipartite graph Gn :

O(
√
n)

O(
√
n)

Proposition
χ1-ext(Gn) = Θ(log(n)).
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Cographs



Cographs

A cograph is defined recursively as follows :

• A graph with a single vertex is a cograph.

• If G1 and G2 are both cographs, then G1 ∪ G2 and G1 + G2 are cographs.

G1 ∪ G2

G1 G2

G1 + G2

G1 G2
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1-extendable cographs

Proposition
Given two graphs G1 and G2,

1. G1 ∪ G2 is 1-extendable iff both G1 and G2 are 1-extendable ;

2. G1 + G2 is 1-extentable iff both G1 and G2 are 1-extendable and α(G1) = α(G2).
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Partition of cographs

Theorem
For any cograph G , χ1-ext(G ) 6 log2(α(G )) + 1.

Idea of the proof.
Find a partition of V (G ) = V1 t V2 with :

• G [V1] 1-extendable ;

• α(G [V2]) 6 α(G )/2
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Lemma

Lemma

For any cograph G = (V ,E ) and any k ∈ {0, ..., α(G )}, there exists a partition of the

vertices into two subsets V1 and V2 such that

• G [V1] is 1-extendable ;

• α(G [V1]) = k ;

• α(G [V2]) 6 max(k − 1, α(G )− k)

Proof of the theorem.

Apply the lemma for k = α(G)
2 , G [V1] 1-extendable and α(G [V2]) ≤ α(G)

2 . Continue

recursively with G [V2].
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Proof of the lemma, induction case G = G1 + G2

Let k ∈ {0, ..., α(G )}, we apply the induction hypothesis on (G1, k) and (G2, k).

G1 + G2

G1 G2

Both 1-extendable

with α = k

No large MIS
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Proof of the lemma, induction case G = G1 ∪ G2

Let k ∈ {0, ..., α(G )}, we apply the induction hypothesis on (G1, k1) and (G2, k2),

where

k1 = k
α(G1)

α(G1) + α(G2)
k2 = k

α(G2)

α(G1) + α(G2)
k1 + k2 = k

G1 ∪ G2

G1 G2

Both 1-extendable with

α1 = k1 and α2 = k2

No large MIS 20/22



Case of cographs

Theorem
For any cograph G , χ1-ext(G ) 6 log2(α(G )) + 1, and the bound is tight.

Theorem
There exists an algorithm that solves the 1-Extendable k-Partition problem on

cographs in time O(nk).

Corollary
The 1-Extendable Partition problem can be solved in time O(npoly(log(n)))

(quasi-polynomial), and thus is not NP-Hard on cographs, unless the ETH is false.
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Conclusion and further research

• New extremal results on χ1-ext, tight on cographs but still a gap on arbitrary

graphs.

• Quasi-polynomial algorithm for solving the partition problem on cographs.

Is polynomial possible?

• More algorithms on geometric graphs (unit disk graphs and disk graphs).

THANKS
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