

1-extendable partition of graphs

Pierre Bergé, Carl Feghali, <u>Malory Marin</u>, Rémi Watrigant November 21, 2023

Laboratoire de L'informatique et du Parallélisme, ENS de Lyon

Context

Structural results

Unit Disk Graphs

Extremal properties

Cographs

Conclusion and further research

Context

S(G): set of independent sets of G. p_v : Probability of access of node v.

$$p_{v} = \frac{\sum_{S \in \mathcal{S}(G), v \in S} \theta^{|S|}}{\sum_{S \in \mathcal{S}(G)} \theta^{|S|}}$$

where $\theta >> 1$ if a "physical parameter" ¹.

¹Rafael Laufer and Leonard Kleinrock. "The Capacity of Wireless CSMA/CA Networks". In: IEEE/ACM Transactions on Networking 24.3 (2016)

S(G): set of independent sets of G. p_v : Probability of access of node v.

$$p_{v} = \frac{\sum_{S \in \mathcal{S}(G), v \in S} \theta^{|S|}}{\sum_{S \in \mathcal{S}(G)} \theta^{|S|}}$$

where $\theta >> 1$ if a "physical parameter" ¹.

Example

 $p_a = rac{ heta^2 + heta}{ heta^2 + 4 heta} \qquad p_b = rac{ heta}{ heta^2 + 4 heta}$

¹Rafael Laufer and Leonard Kleinrock. "The Capacity of Wireless CSMA/CA Networks". In: IEEE/ACM Transactions on Networking 24.3 (2016)

When $heta
ightarrow+\infty$,

$$p_v \sim rac{{
m nb \ of \ max. \ indep. \ sets \ of \ G \ containing \ v}}{{
m nb \ of \ max. \ indep. \ sets \ of \ G}} := ilde{p_v}$$

Example

$$ilde{p_a} = ilde{p_c} = 1 \qquad ilde{p_b} = ilde{p_d} = 0$$

When $\theta \to +\infty$.

BAD

What's the difference between a good and a bad network ?

Definition A graph G = (V, E) is 1-extendable if any vertex belongs to an MIS.

Example

A 1-extendable graph.

If G = (V, E) is 1-extendable, for any $v \in V$, $\widetilde{p_v} > 0 \rightarrow$ Minimal fairness, Good

If the graph is not 1-extendable, what can we do ?

If the graph is not 1-extendable, what can we do ? Assign a channel to each vertex.

Example

If the graph is not 1-extendable, what can we do ? Assign a channel to each vertex.

Example

Definition (Berge 78) A graph *G* is 1-*extendable* if each vertex belongs to an MIS.

Theorem (Bergé, Busson, Feghali, Watrigant 2022) *Testing* 1-*extendability is NP-hard, even on unit disk graph.* **Definition (Berge 78)** A graph *G* is 1-*extendable* if each vertex belongs to an MIS.

Theorem (Bergé, Busson, Feghali, Watrigant 2022) *Testing* 1-*extendability is NP-hard, even on unit disk graph.*

1-EXTENDABLE PARTITION **Input :** A graph G = (V, E) and an integer k. **Question :** Can we find a partition $V = V_1 \cup ... \cup V_k$ such that $G[V_i]$ is 1-extendable for any $1 \le i \le k$? **Definition (Berge 78)** A graph *G* is 1-*extendable* if each vertex belongs to an MIS.

Theorem (Bergé, Busson, Feghali, Watrigant 2022) *Testing* 1-*extendability is NP-hard, even on unit disk graph.*

```
1-EXTENDABLE PARTITION

Input : A graph G = (V, E) and an integer k.

Question : Can we find a partition V = V_1 \cup ... \cup V_k such that G[V_i] is 1-extendable

for any 1 \le i \le k?
```

Theorem

1-EXTENDABLE *k*-PARTITION *is NP-hard for any fixed k*.

$\chi_{1-\text{ext}}(G)$: smallest integer k such that G has a partition into k 1-extendable induced subgraphs.

Structural results

Unit disk graphs : Model for wireless networks

Definition

A graph G = (V, E) is a *unit disk graph* if there exists a mapping $f : V \to \mathbb{R}^2$ such that $uv \in E$ if, and only if, $||f(u) - f(v)|| \leq 1$.

Theorem

For any unit disk graph G, $\chi_{1-ext}(G) \leq 7$.

Unit disk graphs : Model for wireless networks

Definition

A graph G = (V, E) is a *unit disk graph* if there exists a mapping $f : V \to \mathbb{R}^2$ such that $uv \in E$ if, and only if, $||f(u) - f(v)|| \leq 1$.

Theorem

For any unit disk graph G, $\chi_{1-ext}(G) \leq 7$.

Theorem For any graph G with n vertices, $\chi_{1-ext}(G) \leq 2\sqrt{n}$.

Lemma For any graph G, $\chi_{1-ext}(G) \leq \alpha(G)$.

Proof.

If $\alpha(G) = 1$, then G is a clique and $\chi_{1-\text{ext}}(G) = 1$. If $\alpha(G) > 1$, let S be the set of vertices of G that are in an MIS. Notice that :

- G[S] is 1-extendable ;
- $\alpha(G-S) \leq \alpha(G) 1.$

By induction hypothesis, $\chi_{1-\text{ext}}(G-S) \leqslant \alpha(G) - 1$ and use one color for S.

For any graph G with n vertices, $\chi_{1-ext}(G) \leq 2\sqrt{n}$.

Proof.

If $\alpha(G) > \sqrt{n}$, extract an MIS S, use one color for S and recursively color G - S.

If $\alpha(G) \leqslant \sqrt{n}$, use $\alpha(G)$ colors with the previous lemma

Lower bound

Is $O(\sqrt{n})$ optimal ? Consider the following complete multipartite graph G_n :

Lower bound

Is $O(\sqrt{n})$ optimal ? Consider the following complete multipartite graph G_n :

Proposition $\chi_{1-ext}(G_n) = \Theta(\log(n)).$

Cographs

Cographs

A cograph is defined recursively as follows :

- A graph with a single vertex is a cograph.
- If G_1 and G_2 are both cographs, then $G_1 \cup G_2$ and $G_1 + G_2$ are cographs.

Proposition Given two graphs G_1 and G_2 ,

- 1. $G_1 \cup G_2$ is 1-extendable iff both G_1 and G_2 are 1-extendable ;
- 2. $G_1 + G_2$ is 1-extentable iff both G_1 and G_2 are 1-extendable and $\alpha(G_1) = \alpha(G_2)$.

For any cograph G, $\chi_{1-ext}(G) \leq \log_2(\alpha(G)) + 1$.

Idea of the proof. Find a partition of $V(G) = V_1 \sqcup V_2$ with :

- $G[V_1]$ 1-extendable ;
- $\alpha(G[V_2]) \leq \alpha(G)/2$

Lemma

For any cograph G = (V, E) and any $k \in \{0, ..., \alpha(G)\}$, there exists a partition of the vertices into two subsets V_1 and V_2 such that

- $G[V_1]$ is 1-extendable ;
- $\alpha(G[V_1]) = k$;
- $\alpha(G[V_2]) \leq \max(k-1, \alpha(G)-k)$

Proof of the theorem.

Apply the lemma for $k = \frac{\alpha(G)}{2}$, $G[V_1]$ 1-extendable and $\alpha(G[V_2]) \le \frac{\alpha(G)}{2}$. Continue recursively with $G[V_2]$.

Let $k \in \{0, ..., \alpha(G)\}$, we apply the induction hypothesis on (G_1, k) and (G_2, k) .

Proof of the lemma, induction case $G = G_1 \cup G_2$

Let $k \in \{0, ..., \alpha(G)\}$, we apply the induction hypothesis on (G_1, k_1) and (G_2, k_2) , where

$$k_{1} = k \frac{\alpha(G_{1})}{\alpha(G_{1}) + \alpha(G_{2})} \qquad k_{2} = k \frac{\alpha(G_{2})}{\alpha(G_{1}) + \alpha(G_{2})} \qquad k_{1} + k_{2} = k$$
Both 1-extendable with

$$\alpha_{1} = k_{1} \text{ and } \alpha_{2} = k_{2}$$

$$G_{1} \cup G_{2}$$

$$G_{1} \cup G_{2}$$

$$G_{1} \cup G_{2}$$
No large MIS

20/22

For any cograph G, $\chi_{1-ext}(G) \leq \log_2(\alpha(G)) + 1$, and the bound is tight.

For any cograph G, $\chi_{1-ext}(G) \leq \log_2(\alpha(G)) + 1$, and the bound is tight.

Theorem

There exists an algorithm that solves the 1-EXTENDABLE k-PARTITION problem on cographs in time $\mathcal{O}(n^k)$.

For any cograph G, $\chi_{1-ext}(G) \leq \log_2(\alpha(G)) + 1$, and the bound is tight.

Theorem

There exists an algorithm that solves the 1-EXTENDABLE k-PARTITION problem on cographs in time $\mathcal{O}(n^k)$.

Corollary

The 1-EXTENDABLE PARTITION problem can be solved in time $\mathcal{O}(n^{poly(\log(n))})$ (quasi-polynomial), and thus is not NP-Hard on cographs, unless the ETH is false.

For any cograph G, $\chi_{1-ext}(G) \leq \log_2(\alpha(G)) + 1$, and the bound is tight.

Theorem

There exists an algorithm that solves the 1-EXTENDABLE k-PARTITION problem on cographs in time $\mathcal{O}(n^k)$.

Corollary

The 1-EXTENDABLE PARTITION problem can be solved in time $\mathcal{O}(n^{poly(\log(n))})$ (quasi-polynomial), and thus is not NP-Hard on cographs, unless the ETH is false.

Conclusion and further research

• New extremal results on $\chi_{\rm 1-ext},$ tight on cographs but still a gap on arbitrary graphs.

- New extremal results on $\chi_{\rm 1-ext},$ tight on cographs but still a gap on arbitrary graphs.
- Quasi-polynomial algorithm for solving the partition problem on cographs. Is polynomial possible?

- New extremal results on $\chi_{\rm 1-ext},$ tight on cographs but still a gap on arbitrary graphs.
- Quasi-polynomial algorithm for solving the partition problem on cographs. Is polynomial possible?
- More algorithms on geometric graphs (unit disk graphs and disk graphs).

- New extremal results on $\chi_{\rm 1-ext},$ tight on cographs but still a gap on arbitrary graphs.
- Quasi-polynomial algorithm for solving the partition problem on cographs. Is polynomial possible?
- More algorithms on geometric graphs (unit disk graphs and disk graphs).

THANKS