1-extendable partition of graphs

Pierre Bergé, Carl Feghali, Malory Marin, Rémi Watrigant
November 21, 2023

Laboratoire de L’informatique et du Parallélisme, ENS de Lyon
Context

Structural results
 Unit Disk Graphs
 Extremal properties

Cographs

Conclusion and further research
Context
Wi-Fi Network:

\(S(G) \): set of independent sets of \(G \).

\(p_v \): Probability of access of node \(v \).

\[
p_v = \frac{\sum_{S \in S(G), v \in S} \theta^{|S|}}{\sum_{S \in S(G)} \theta^{|S|}}
\]

where \(\theta >> 1 \) if a “physical parameter”\(^1\).

Wireless Networks

$S(G)$: set of independent sets of G.

p_v: Probability of access of node v.

$$p_v = \frac{\sum_{S \in S(G), v \in S} \theta^{|S|}}{\sum_{S \in S(G)} \theta^{|S|}}$$

where $\theta >> 1$ if a “physical parameter”\(^1\).

Example

$$p_a = \frac{\theta^2 + \theta}{\theta^2 + 4\theta} \quad p_b = \frac{\theta}{\theta^2 + 4\theta}$$

When $\theta \to +\infty$,

$$p_v \sim \frac{\text{nb of max. indep. sets of } G \text{ containing } v}{\text{nb of max. indep. sets of } G} \quad := \tilde{p}_v$$
Wireless Networks

When $\theta \to +\infty$,

\[p_v \sim \frac{\text{nb of max. indep. sets of } G \text{ containing } v}{\text{nb of max. indep. sets of } G} := \tilde{p}_v \]

Example

\[\tilde{p}_a = \tilde{p}_c = 1 \quad \tilde{p}_b = \tilde{p}_d = 0 \]
Wireless Networks

Wi-Fi Network:

When $\theta \to +\infty$,

$$p_v \sim \frac{\text{nb of max. indep. sets of } G \text{ containing } v}{\text{nb of max. indep. sets of } G} := \tilde{p}_v$$

Example

$$\tilde{p}_a = \tilde{p}_c = 1 \quad \tilde{p}_b = \tilde{p}_d = 0$$

BAD
What's the difference between a good and a bad network?

Definition
A graph $G = (V, E)$ is **1-extendable** if any vertex belongs to an MIS.

Example

A 1-extendable graph.

If $G = (V, E)$ is 1-extendable, for any $v \in V$, $\tilde{p}_v > 0 \rightarrow$ Minimal fairness, **Good**
What control do we have?

If the graph is not 1-extendable, what can we do?
What control do we have?

If the graph is not 1-extendable, what can we do? Assign a channel to each vertex.

Example
What control do we have?

If the graph is not 1-extendable, what can we do? Assign a channel to each vertex.

Example
Definition (Berge 78)
A graph G is 1-extendable if each vertex belongs to an MIS.

Theorem (Bergé, Busson, Feghali, Watrigant 2022)
Testing 1-extendability is NP-hard, even on unit disk graph.
1-extendable and well-covered graphs

Definition (Berge 78)
A graph G is 1-extendable if each vertex belongs to an MIS.

Theorem (Bergé, Busson, Feghali, Watrigant 2022)
Testing 1-extendability is NP-hard, even on unit disk graph.

1-Extendable Partition

Input : A graph $G = (V, E)$ and an integer k.

Question : Can we find a partition $V = V_1 \cup ... \cup V_k$ such that $G[V_i]$ is 1-extendable for any $1 \leq i \leq k$?
1-extendable and well-covered graphs

Definition (Berge 78)
A graph G is 1-extendable if each vertex belongs to an MIS.

Theorem (Bergé, Busson, Feghali, Watrigant 2022)
Testing 1-extendability is NP-hard, even on unit disk graph.

1-Extendable Partition

Input: A graph $G = (V, E)$ and an integer k.

Question: Can we find a partition $V = V_1 \cup \ldots \cup V_k$ such that $G[V_i]$ is 1-extendable for any $1 \leq i \leq k$?

Theorem
1-Extendable k-Partition is NP-hard for any fixed k.
\(\chi_{1\text{-ext}}(G) \): smallest integer \(k \) such that \(G \) has a partition into \(k \) 1-extendable induced subgraphs.
Structural results
Definition
A graph $G = (V, E)$ is a unit disk graph if there exists a mapping $f : V \rightarrow \mathbb{R}^2$ such that $uv \in E$ if, and only if, $\|f(u) - f(v)\| \leq 1$.

Theorem
For any unit disk graph G, $\chi_{1\text{-ext}}(G) \leq 7$.
Unit disk graphs: Model for wireless networks

Definition
A graph $G = (V, E)$ is a unit disk graph if there exists a mapping $f : V \rightarrow \mathbb{R}^2$ such that $uv \in E$ if, and only if, $\|f(u) - f(v)\| \leq 1$.

Theorem
For any unit disk graph G, $\chi_{1\text{-ext}}(G) \leq 7$.
Extremal properties of $\chi_{1\text{-ext}}$

Theorem

*For any graph G with n vertices, $\chi_{1\text{-ext}}(G) \leq 2\sqrt{n}$.***
Lemma
For any graph G, $\chi_{1\text{-ext}}(G) \leq \alpha(G)$.

Proof.
If $\alpha(G) = 1$, then G is a clique and $\chi_{1\text{-ext}}(G) = 1$. If $\alpha(G) > 1$, let S be the set of vertices of G that are in an MIS. Notice that:

- $G[S]$ is 1-extendable;
- $\alpha(G - S) \leq \alpha(G) - 1$.

By induction hypothesis, $\chi_{1\text{-ext}}(G - S) \leq \alpha(G) - 1$ and use one color for S.

\square
Theorem
For any graph G with n vertices, $\chi_{1\text{-ext}}(G) \leq 2\sqrt{n}$.

Proof.
If $\alpha(G) > \sqrt{n}$, extract an MIS S, use one color for S and recursively color $G - S$.

If $\alpha(G) \leq \sqrt{n}$, use $\alpha(G)$ colors with the previous lemma.
Is $O(\sqrt{n})$ optimal? Consider the following complete multipartite graph G_n:

Proposition $\chi_{1\text{-ext}}(G_n) = \Theta(\log(n))$.

\[O(\sqrt{n})\]
Is $O(\sqrt{n})$ optimal? Consider the following complete multipartite graph G_n:

Proposition

$\chi_{1\text{-ext}}(G_n) = \Theta(\log(n))$.

[Diagram of a complete multipartite graph G_n]
Cographs
A cograph is defined recursively as follows:

- A graph with a single vertex is a cograph.
- If G_1 and G_2 are both cographs, then $G_1 \cup G_2$ and $G_1 + G_2$ are cographs.
1-extendable cographs

Proposition
Given two graphs G_1 and G_2,

1. $G_1 \cup G_2$ is 1-extendable iff both G_1 and G_2 are 1-extendable;

2. $G_1 + G_2$ is 1-extendable iff both G_1 and G_2 are 1-extendable and $\alpha(G_1) = \alpha(G_2)$.
Theorem
For any cograph G, $\chi_{1\text{-ext}}(G) \leq \log_2(\alpha(G)) + 1$.

Idea of the proof.
Find a partition of $V(G) = V_1 \sqcup V_2$ with:

- $G[V_1]$ 1-extendable;
- $\alpha(G[V_2]) \leq \alpha(G)/2$
Lemma

For any cograph $G = (V, E)$ and any $k \in \{0, ..., \alpha(G)\}$, there exists a partition of the vertices into two subsets V_1 and V_2 such that

- $G[V_1]$ is 1-extendable;
- $\alpha(G[V_1]) = k$;
- $\alpha(G[V_2]) \leq \max(k - 1, \alpha(G) - k)$

Proof of the theorem.
Apply the lemma for $k = \frac{\alpha(G)}{2}$, $G[V_1]$ 1-extendable and $\alpha(G[V_2]) \leq \frac{\alpha(G)}{2}$. Continue recursively with $G[V_2]$. \qed
Proof of the lemma, induction case $G = G_1 + G_2$

Let $k \in \{0, ..., \alpha(G)\}$, we apply the induction hypothesis on (G_1, k) and (G_2, k).

Both 1-extendable with $\alpha = k$

No large MIS
Proof of the lemma, induction case $G = G_1 \cup G_2$

Let $k \in \{0, ..., \alpha(G)\}$, we apply the induction hypothesis on (G_1, k_1) and (G_2, k_2), where

$$k_1 = k \frac{\alpha(G_1)}{\alpha(G_1) + \alpha(G_2)} \quad k_2 = k \frac{\alpha(G_2)}{\alpha(G_1) + \alpha(G_2)} \quad k_1 + k_2 = k$$

Both 1-extendable with

$\alpha_1 = k_1$ and $\alpha_2 = k_2$

No large MIS
Case of cographs

Theorem

For any cograph G, $\chi_{1\text{-ext}}(G) \leq \log_2(\alpha(G)) + 1$, and the bound is tight.
Case of cographs

Theorem
For any cograph G, $\chi_{1\text{-ext}}(G) \leq \log_2(\alpha(G)) + 1$, and the bound is tight.

Theorem
There exists an algorithm that solves the **1-EXTENDABLE k-PARTITION** problem on cographs in time $\mathcal{O}(n^k)$.
Case of cographs

Theorem
For any cograph G, $\chi_{1\text{-ext}}(G) \leq \log_2(\alpha(G)) + 1$, and the bound is tight.

Theorem
There exists an algorithm that solves the 1-$\text{Extendable } k$-Partition problem on cographs in time $O(n^k)$.

Corollary
The 1-$\text{Extendable Partition}$ problem can be solved in time $O(n^{\text{poly}(\log(n))})$ (quasi-polynomial), and thus is not NP-Hard on cographs, unless the ETH is false.
Theorem
For any cograph G, $\chi_{1\text{-ext}}(G) \leq \log_2(\alpha(G)) + 1$, and the bound is tight.

Theorem
There exists an algorithm that solves the 1-Extendable k-Partition problem on cographs in time $O(n^k)$.

Corollary
The 1-Extendable Partition problem can be solved in time $O(n^{\text{poly}(\log(n))})$ (quasi-polynomial), and thus is not NP-Hard on cographs, unless the ETH is false.
Conclusion and further research
Conclusion and further research

- New extremal results on $\chi_{1\text{-ext}}$, tight on cographs but still a gap on arbitrary graphs.
Conclusion and further research

• New extremal results on $\chi_{1\text{-ext}}$, tight on cographs but still a gap on arbitrary graphs.

• Quasi-polynomial algorithm for solving the partition problem on cographs. Is polynomial possible?
Conclusion and further research

• New extremal results on $\chi_{1\text{-ext}}$, tight on cographs but still a gap on arbitrary graphs.

• Quasi-polynomial algorithm for solving the partition problem on cographs. Is polynomial possible?

• More algorithms on geometric graphs (unit disk graphs and disk graphs).
Conclusion and further research

- New extremal results on $\chi_{1\text{-ext}}$, tight on cographs but still a gap on arbitrary graphs.
- Quasi-polynomial algorithm for solving the partition problem on cographs. Is polynomial possible?
- More algorithms on geometric graphs (unit disk graphs and disk graphs).

THANKS