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Reconfiguration

Two solutions A and B of a problem P .

If yes, how many steps do we need?
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A

A1 A2 .............. Ak
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Target

B
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Spanning trees

Solutions: Two spanning trees on a set of n points

Elem. step: Flip (remove an edge, then add another one)

T1 T2
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Reconfiguration of spanning trees

T1 T2

1 flip per match

Theorem (folklore)

A minimal transformation from a spanning tree T1 to another spanning tree T2 uses
exactly d(T1,T2) flips.

Reconfiguration of plane trees in convex geometric graphs 4 / 13



Reconfiguration of spanning trees

T1 T2

1 flip per match

Theorem (folklore)

A minimal transformation from a spanning tree T1 to another spanning tree T2 uses
exactly d(T1,T2) flips.

Reconfiguration of plane trees in convex geometric graphs 4 / 13



Reconfiguration of spanning trees

T1 T2

1 flip per match

Theorem (folklore)

A minimal transformation from a spanning tree T1 to another spanning tree T2 uses
exactly d(T1,T2) flips.

Reconfiguration of plane trees in convex geometric graphs 4 / 13



Reconfiguration of spanning trees

T1 T2

1 flip per match

Theorem (folklore)

A minimal transformation from a spanning tree T1 to another spanning tree T2 uses
exactly d(T1,T2) flips.

Reconfiguration of plane trees in convex geometric graphs 4 / 13



Reconfiguration of spanning trees

T1 T2

1 flip per match

Theorem (folklore)

A minimal transformation from a spanning tree T1 to another spanning tree T2 uses
exactly d(T1,T2) flips.

Reconfiguration of plane trees in convex geometric graphs 4 / 13



Symmetric difference

Definitions

∆(T1,T2) = (T1 \ T2) ∪ (T2 \ T1)

d(T1,T2) = |∆(T1,T2)|/2 = |T1 \ T2| = |T2 \ T1|

T1 T2

d = half of the size of the symmetric difference.
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Non-crossing spanning tree on a convex set

Solutions: Two

non-crossing

spanning trees on a set of n points

in convex position
Elem. step: Flip

Tree = non-crossing spanning tree on a convex set.

Reconfiguration of plane trees in convex geometric graphs 6 / 13



Non-crossing spanning tree on a convex set

Solutions: Two non-crossing spanning trees on a set of n points

in convex position
Elem. step: Flip

Tree = non-crossing spanning tree on a convex set.

Reconfiguration of plane trees in convex geometric graphs 6 / 13



Non-crossing spanning tree on a convex set

Solutions: Two non-crossing spanning trees on a set of n points in convex position

Elem. step: Flip

Tree = non-crossing spanning tree on a convex set.

Reconfiguration of plane trees in convex geometric graphs 6 / 13



Non-crossing spanning tree on a convex set

Solutions: Two non-crossing spanning trees on a set of n points in convex position
Elem. step: Flip

Tree = non-crossing spanning tree on a convex set.

Reconfiguration of plane trees in convex geometric graphs 6 / 13



Non-crossing spanning tree on a convex set

Solutions: Two non-crossing spanning trees on a set of n points in convex position
Elem. step: Flip

Tree = non-crossing spanning tree on a convex set.

Reconfiguration of plane trees in convex geometric graphs 6 / 13



Reconfiguration of n.-c. spanning trees on convex set

Avis and Fukuda (’96)

For every pair of non-crossing spanning trees T1 and T2, there exists a transformation
from T1 to T2 using flips.

T1 T2

How many flips are needed in the worst case?
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Reconfiguration of n.-c. spanning trees on convex set

Avis and Fukuda (’96)

For every pair of non-crossing spanning trees T1 and T2, there exists a transformation
from T1 to T2 using at most 2n − 4 flips.

T1 T2

How many flips are needed in the worst case?
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Existing results

How many flips are needed in the worst case?

Upper Bound:
2n − 4 flips (Avis and Fukuda, 1996).

2d − Ω(log d) flips (Aichholzer et al., 2022+).
2n − Ω(

√
n) flips (Bousquet et al., 2023).

≈ 1.95d flips.
Lower Bound:

3
2n − 5 flips (Hernando et al., 1999).

5
3d flips.

Conjecture
For every pair of trees T1 and T2, there is a transformation from T1 to T2 using at
most 3

2n flips.
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Result on upper bound

Theorem (Bousquet, dM, Pierron, Wesolek)

For every pair of trees T1 and T2, there is a transformation from T1 to T2 using at
most c · d flips with:

c =
1
12

(22 +
√

2) ≈ 1.95

=⇒ there is always a transformation using at most c · n flips.
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Very good side

Side (of a non-border edge) : one subset of the convex set when cutting along the
edge, endpoints included.

Very good side

≤ 5
3 flip per match

Matched side

e

v1

v4

v3

v2v6

v5
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Proof sketch

Existing side with
weaker properties

≤ 2 flips per match

Very good side

≤ 5
3 flips per match

Matched side
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End of proof

Existing side with
weaker properties

≤ c flips per match

Matched side

Reconfiguration of plane trees in convex geometric graphs 12 / 13



End of proof

Existing side with
weaker properties

≤ c flips per match

Matched side
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Conclusion

How many flips are needed in the worst case ?

5
3d ≤ number of flips ≤ c · d ≈ 1.95d

Conjecture with symmetric difference
For every pair of trees T1 and T2, there is a transformation from T1 to T2 using at
most 5

3d flips.

Other models of elementary steps:
Non-crossing flips:

2d ≤

number of n-c flips ≤ 2d

Rotations: 7
3d ≤ number of rotations ≤ 3d
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Thanks for your attention

END
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Result 2 : lower bound

3
2n − 5 (Hernando et al.).

Theorem (Bousquet, dM, Pierron, Wesolek)

For every k = 0 mod 3, there exists a pair of trees Tk ,T
′
k such that d(Tk ,T

′
k) = k and

whose minimal transformation contains exactly 5
3k flips.

T1 T ′
1
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