Reconfiguration of plane trees in convex geometric graphs

Nicolas Bousquet Lucas De Meyer Théo Pierron Alexandra Wesolek

Team GOAL, LIRIS, Université de Lyon 1

November 23, 2023

Two solutions A and B of a problem P.

Two solutions A and B of a problem P. Can we transform A into B?

Two <u>solutions</u> A and B of a problem P. Can we transform A into B via a sequence of <u>elementary steps</u> while keeping solutions of P all along?

• **Solutions:** Two spanning trees on a set of *n* points

- Solutions: Two spanning trees on a set of *n* points
- Elem. step: Flip (remove an edge, then add another one)

- Solutions: Two spanning trees on a set of *n* points
- Elem. step: Flip (remove an edge, then add another one)

- Solutions: Two spanning trees on a set of *n* points
- Elem. step: Flip (remove an edge, then add another one)

- Solutions: Two spanning trees on a set of *n* points
- Elem. step: Flip (remove an edge, then add another one)

Theorem (folklore)

A minimal transformation from a spanning tree T_1 to another spanning tree T_2 uses exactly $d(T_1, T_2)$ flips.

Reconfiguration of plane trees in convex geometric graphs

Definitions

$$\Delta(T_1, T_2) = (T_1 \setminus T_2) \cup (T_2 \setminus T_1)$$
$$d(T_1, T_2) = |\Delta(T_1, T_2)|/2 = |T_1 \setminus T_2| = |T_2 \setminus T_1|$$

Definitions

Definitions

 T_1

Definitions

• d = half of the size of the symmetric difference.

• <u>Solutions</u>: Two spanning trees on a set of *n* points

• **Solutions:** Two non-crossing spanning trees on a set of *n* points

• Solutions: Two non-crossing spanning trees on a set of *n* points in convex position

- Solutions: Two non-crossing spanning trees on a set of *n* points in convex position
- Elem. step: Flip

- Solutions: Two non-crossing spanning trees on a set of *n* points in convex position
- Elem. step: Flip

Tree = non-crossing spanning tree on a convex set.

Avis and Fukuda ('96)

Avis and Fukuda ('96)

For every pair of non-crossing spanning trees T_1 and T_2 , there exists a transformation from T_1 to T_2 using flips.

Avis and Fukuda ('96)

For every pair of non-crossing spanning trees T_1 and T_2 , there exists a transformation from T_1 to T_2 using at most 2n - 4 flips.

- Upper Bound:
 - 2n 4 flips (Avis and Fukuda, 1996).

- Upper Bound:
 - 2n 4 flips (Avis and Fukuda, 1996).
 - $2d \Omega(\log d)$ flips (Aichholzer et al., 2022+).

- Upper Bound:
 - 2n 4 flips (Avis and Fukuda, 1996).
 - $2d \Omega(\log d)$ flips (Aichholzer et al., 2022+).
 - $2n \Omega(\sqrt{n})$ flips (Bousquet et al., 2023).

- Upper Bound:
 - 2n 4 flips (Avis and Fukuda, 1996).
 - $2d \Omega(\log d)$ flips (Aichholzer et al., 2022+).
 - $2n \Omega(\sqrt{n})$ flips (Bousquet et al., 2023).
- Lower Bound:

- Upper Bound:
 - 2n 4 flips (Avis and Fukuda, 1996).
 - $2d \Omega(\log d)$ flips (Aichholzer et al., 2022+).
 - $2n \Omega(\sqrt{n})$ flips (Bousquet et al., 2023).
- Lower Bound:
 - $\frac{3}{2}n 5$ flips (Hernando et al., 1999).

- Upper Bound:
 - 2n 4 flips (Avis and Fukuda, 1996).
 - $2d \Omega(\log d)$ flips (Aichholzer et al., 2022+).
 - $2n \Omega(\sqrt{n})$ flips (Bousquet et al., 2023).
- Lower Bound:
 - $\frac{3}{2}n 5$ flips (Hernando et al., 1999).

Conjecture

- Upper Bound:
 - 2n 4 flips (Avis and Fukuda, 1996).
 - $2d \Omega(\log d)$ flips (Aichholzer et al., 2022+).
 - $2n \Omega(\sqrt{n})$ flips (Bousquet et al., 2023).
 - $\approx 1.95d$ flips.
- Lower Bound:
 - $\frac{3}{2}n 5$ flips (Hernando et al., 1999).

Conjecture

- Upper Bound:
 - 2n 4 flips (Avis and Fukuda, 1996).
 - $2d \Omega(\log d)$ flips (Aichholzer et al., 2022+).
 - $2n \Omega(\sqrt{n})$ flips (Bousquet et al., 2023).
 - pprox 1.95*d* flips.
- Lower Bound:
 - $\frac{3}{2}n 5$ flips (Hernando et al., 1999).
 - $\frac{5}{3}d$ flips.

Conjecture

Theorem (Bousquet, dM, Pierron, Wesolek)

For every pair of trees T_1 and T_2 , there is a transformation from T_1 to T_2 using at most $c \cdot d$ flips with:

$$c = rac{1}{12}(22 + \sqrt{2}) pprox 1.95$$

Theorem (Bousquet, dM, Pierron, Wesolek)

For every pair of trees T_1 and T_2 , there is a transformation from T_1 to T_2 using at most $c \cdot d$ flips with:

$$c=rac{1}{12}(22+\sqrt{2})pprox 1.95$$

 \implies there is always a transformation using at most $c \cdot n$ flips.

Very good side

Existing side with weaker properties

End of proof

End of proof

How many flips are needed in the worst case ?

number of flips $\leq c \cdot d \approx 1.95d$

$$\frac{5}{3}d \leq \text{number of flips} \leq c \cdot d \approx 1.95d$$

How many flips are needed in the worst case ?

$$\frac{5}{3}d \leq \text{number of flips} \leq c \cdot d \approx 1.95d$$

Conjecture with symmetric difference

How many flips are needed in the worst case ?

 $\frac{5}{3}d \leq \text{number of flips} \leq c \cdot d \approx 1.95d$

Conjecture with symmetric difference

For every pair of trees T_1 and T_2 , there is a transformation from T_1 to T_2 using at most $\frac{5}{3}d$ flips.

Conjecture with number of points

How many flips are needed in the worst case ?

 $\frac{5}{3}d \leq \text{number of flips} \leq c \cdot d \approx 1.95d$

Conjecture with symmetric difference

For every pair of trees T_1 and T_2 , there is a transformation from T_1 to T_2 using at most $\frac{5}{3}d$ flips.

Conjecture with number of points

For every pair of trees T_1 and T_2 , there is a transformation from T_1 to T_2 using at most $\frac{3}{2}n$ flips.

Other models of elementary steps:

• Non-crossing flips: number of n-c flips $\leq 2d$

How many flips are needed in the worst case ?

 $\frac{5}{3}d \leq \text{number of flips} \leq c \cdot d \approx 1.95d$

Conjecture with symmetric difference

For every pair of trees T_1 and T_2 , there is a transformation from T_1 to T_2 using at most $\frac{5}{3}d$ flips.

Conjecture with number of points

For every pair of trees T_1 and T_2 , there is a transformation from T_1 to T_2 using at most $\frac{3}{2}n$ flips.

Other models of elementary steps:

• Non-crossing flips: $2d \leq$ number of n-c flips $\leq 2d$

How many flips are needed in the worst case ?

 $\frac{5}{3}d \leq \text{number of flips} \leq c \cdot d \approx 1.95d$

Conjecture with symmetric difference

For every pair of trees T_1 and T_2 , there is a transformation from T_1 to T_2 using at most $\frac{5}{3}d$ flips.

Conjecture with number of points

For every pair of trees T_1 and T_2 , there is a transformation from T_1 to T_2 using at most $\frac{3}{2}n$ flips.

Other models of elementary steps:

- Non-crossing flips: $2d \leq$ number of n-c flips $\leq 2d$
- Rotations: $\frac{7}{3}d \leq$ number of rotations $\leq 3d$

Thanks for your attention

END

Reconfiguration of plane trees in convex geometric graphs

Result 2 : lower bound

 $\frac{3}{2}n - 5$ (Hernando et al.).

Theorem (Bousquet, dM, Pierron, Wesolek)

For every $k = 0 \mod 3$, there exists a pair of trees T_k , T'_k such that $d(T_k, T'_k) = k$ and whose minimal transformation contains exactly $\frac{5}{3}k$ flips.

