Reconfiguration of plane trees in convex geometric graphs

Nicolas Bousquet Lucas De Meyer Théo Pierron Alexandra Wesolek

Team GOAL, LIRIS, Université de Lyon 1

November 23, 2023

Reconfiguration

Two solutions A and B of a problem P.

Start

Target

A

Reconfiguration

Two solutions A and B of a problem P. Can we transform A into B ?

Reconfiguration

Two solutions A and B of a problem P.
Can we transform A into B via a sequence of elementary steps while keeping solutions of P all along?

Reconfiguration

Two solutions A and B of a problem P.
Can we transform A into B via a sequence of elementary steps while keeping solutions of P all along?
If yes, how many steps do we need?

Reconfiguration

Two solutions A and B of a problem P.
Can we transform A into B via a sequence of elementary steps while keeping solutions of P all along?
If yes, how many steps do we need?

Reconfiguration

Two solutions A and B of a problem P.
Can we transform A into B via a sequence of elementary steps while keeping solutions of P all along?
If yes, how many steps do we need?
Start Solutions of $P \quad$ Target
$A \rightarrow A_{1} \rightarrow A_{2} \rightarrow \cdots \cdots \cdots \rightarrow A_{k} \rightarrow B$

Spanning trees

- Solutions: Two spanning trees on a set of n points

Spanning trees

- Solutions: Two spanning trees on a set of n points
- Elem. step: Flip (remove an edge, then add another one)

Spanning trees

- Solutions: Two spanning trees on a set of n points
- Elem. step: Flip (remove an edge, then add another one)

Spanning trees

- Solutions: Two spanning trees on a set of n points
- Elem. step: Flip (remove an edge, then add another one)

Spanning trees

- Solutions: Two spanning trees on a set of n points
- Elem. step: Flip (remove an edge, then add another one)

Reconfiguration of spanning trees

T_{2}

Reconfiguration of spanning trees

Reconfiguration of spanning trees

T_{2}

Reconfiguration of spanning trees

Reconfiguration of spanning trees

Theorem (folklore)

A minimal transformation from a spanning tree T_{1} to another spanning tree T_{2} uses exactly $d\left(T_{1}, T_{2}\right)$ flips.

Symmetric difference

Definitions

$$
\begin{gathered}
\Delta\left(T_{1}, T_{2}\right)=\left(T_{1} \backslash T_{2}\right) \cup\left(T_{2} \backslash T_{1}\right) \\
d\left(T_{1}, T_{2}\right)=\left|\Delta\left(T_{1}, T_{2}\right)\right| / 2=\left|T_{1} \backslash T_{2}\right|=\left|T_{2} \backslash T_{1}\right|
\end{gathered}
$$

Symmetric difference

Definitions

$$
\begin{gathered}
\Delta\left(T_{1}, T_{2}\right)=\left(T_{1} \backslash T_{2}\right) \cup\left(T_{2} \backslash T_{1}\right) \\
d\left(T_{1}, T_{2}\right)=\left|\Delta\left(T_{1}, T_{2}\right)\right| / 2=\left|T_{1} \backslash T_{2}\right|=\left|T_{2} \backslash T_{1}\right|
\end{gathered}
$$

T_{2}

Symmetric difference

Definitions

$$
\begin{gathered}
\Delta\left(T_{1}, T_{2}\right)=\left(T_{1} \backslash T_{2}\right) \cup\left(T_{2} \backslash T_{1}\right) \\
d\left(T_{1}, T_{2}\right)=\left|\Delta\left(T_{1}, T_{2}\right)\right| / 2=\left|T_{1} \backslash T_{2}\right|=\left|T_{2} \backslash T_{1}\right|<\mathrm{n}
\end{gathered}
$$

Symmetric difference

Definitions

$$
\begin{gathered}
\Delta\left(T_{1}, T_{2}\right)=\left(T_{1} \backslash T_{2}\right) \cup\left(T_{2} \backslash T_{1}\right) \\
d\left(T_{1}, T_{2}\right)=\left|\Delta\left(T_{1}, T_{2}\right)\right| / 2=\left|T_{1} \backslash T_{2}\right|=\left|T_{2} \backslash T_{1}\right|<\mathrm{n}
\end{gathered}
$$

- $d=$ half of the size of the symmetric difference.

Non-crossing spanning tree on a convex set

- Solutions: Two
spanning trees on a set of n points

Non-crossing spanning tree on a convex set

- Solutions: Two non-crossing spanning trees on a set of n points

Non-crossing spanning tree on a convex set

- Solutions: Two non-crossing spanning trees on a set of n points in convex position

Non-crossing spanning tree on a convex set

- Solutions: Two non-crossing spanning trees on a set of n points in convex position
- Elem. step: Flip

Non-crossing spanning tree on a convex set

- Solutions: Two non-crossing spanning trees on a set of n points in convex position
- Elem. step: Flip

Tree $=$ non-crossing spanning tree on a convex set.

Reconfiguration of n.-c. spanning trees on convex set

Reconfiguration of n.-c. spanning trees on convex set

Reconfiguration of n.-c. spanning trees on convex set

Avis and Fukuda ('96)

For every pair of non-crossing spanning trees T_{1} and T_{2}, there exists a transformation from T_{1} to T_{2} using flips.

T_{2}

Reconfiguration of n.-c. spanning trees on convex set

Avis and Fukuda ('96)

For every pair of non-crossing spanning trees T_{1} and T_{2}, there exists a transformation from T_{1} to T_{2} using flips.

T_{2}

Reconfiguration of n.-c. spanning trees on convex set

Avis and Fukuda ('96)

For every pair of non-crossing spanning trees T_{1} and T_{2}, there exists a transformation from T_{1} to T_{2} using flips.

T_{2}

Reconfiguration of n.-c. spanning trees on convex set

Avis and Fukuda ('96)

For every pair of non-crossing spanning trees T_{1} and T_{2}, there exists a transformation from T_{1} to T_{2} using flips.

T_{2}

Reconfiguration of n.-c. spanning trees on convex set

Avis and Fukuda ('96)

For every pair of non-crossing spanning trees T_{1} and T_{2}, there exists a transformation from T_{1} to T_{2} using flips.

T_{2}

Reconfiguration of n.-c. spanning trees on convex set

Avis and Fukuda ('96)

For every pair of non-crossing spanning trees T_{1} and T_{2}, there exists a transformation from T_{1} to T_{2} using flips.

How many flips are needed in the worst case?

Reconfiguration of n.-c. spanning trees on convex set

Avis and Fukuda ('96)

For every pair of non-crossing spanning trees T_{1} and T_{2}, there exists a transformation from T_{1} to T_{2} using at most $2 n-4$ flips.

How many flips are needed in the worst case?

Existing results

How many flips are needed in the worst case?

- Upper Bound:
- $2 n-4$ flips (Avis and Fukuda, 1996).

Existing results

How many flips are needed in the worst case?

- Upper Bound:
- $2 n-4$ flips (Avis and Fukuda, 1996).
- $2 d-\Omega(\log d)$ flips (Aichholzer et al., 2022+).

Existing results

How many flips are needed in the worst case?

- Upper Bound:
- $2 n-4$ flips (Avis and Fukuda, 1996).
- $2 d-\Omega(\log d)$ flips (Aichholzer et al., 2022+).
- $2 n-\Omega(\sqrt{n})$ flips (Bousquet et al., 2023).

Existing results

How many flips are needed in the worst case?

- Upper Bound:
- $2 n-4$ flips (Avis and Fukuda, 1996).
- $2 d-\Omega(\log d)$ flips (Aichholzer et al., 2022+).
- $2 n-\Omega(\sqrt{n})$ flips (Bousquet et al., 2023).
- Lower Bound:

Existing results

How many flips are needed in the worst case?

- Upper Bound:
- $2 n-4$ flips (Avis and Fukuda, 1996).
- $2 d-\Omega(\log d)$ flips (Aichholzer et al., 2022+).
- $2 n-\Omega(\sqrt{n})$ flips (Bousquet et al., 2023).
- Lower Bound:
- $\frac{3}{2} n-5$ flips (Hernando et al., 1999).

Existing results

How many flips are needed in the worst case?

- Upper Bound:
- $2 n-4$ flips (Avis and Fukuda, 1996).
- $2 d-\Omega(\log d)$ flips (Aichholzer et al., 2022+).
- $2 n-\Omega(\sqrt{n})$ flips (Bousquet et al., 2023).
- Lower Bound:
- $\frac{3}{2} n-5$ flips (Hernando et al., 1999).

Conjecture

For every pair of trees T_{1} and T_{2}, there is a transformation from T_{1} to T_{2} using at most $\frac{3}{2} n$ flips.

Existing results

How many flips are needed in the worst case?

- Upper Bound:
- $2 n-4$ flips (Avis and Fukuda, 1996).
- $2 d-\Omega(\log d)$ flips (Aichholzer et al., 2022+).
- $2 n-\Omega(\sqrt{n})$ flips (Bousquet et al., 2023).
- $\approx 1.95 d$ flips.
- Lower Bound:
- $\frac{3}{2} n-5$ flips (Hernando et al., 1999).

Conjecture

For every pair of trees T_{1} and T_{2}, there is a transformation from T_{1} to T_{2} using at most $\frac{3}{2} n$ flips.

Existing results

How many flips are needed in the worst case?

- Upper Bound:
- $2 n-4$ flips (Avis and Fukuda, 1996).
- $2 d-\Omega(\log d)$ flips (Aichholzer et al., 2022+).
- $2 n-\Omega(\sqrt{n})$ flips (Bousquet et al., 2023).
- $\approx 1.95 d$ flips.
- Lower Bound:
- $\frac{3}{2} n-5$ flips (Hernando et al., 1999).
- $\frac{5}{3} d$ flips.

Conjecture

For every pair of trees T_{1} and T_{2}, there is a transformation from T_{1} to T_{2} using at most $\frac{3}{2} n$ flips.

Result on upper bound

Theorem (Bousquet, dM, Pierron, Wesolek)
For every pair of trees T_{1} and T_{2}, there is a transformation from T_{1} to T_{2} using at most $c \cdot d$ flips with:

$$
c=\frac{1}{12}(22+\sqrt{2}) \approx 1.95
$$

Result on upper bound

Theorem (Bousquet, dM, Pierron, Wesolek)

For every pair of trees T_{1} and T_{2}, there is a transformation from T_{1} to T_{2} using at most $c \cdot d$ flips with:

$$
c=\frac{1}{12}(22+\sqrt{2}) \approx 1.95
$$

\Longrightarrow there is always a transformation using at most $c \cdot n$ flips.

Very good side

Side (of a non-border edge) : one subset of the convex set when cutting along the edge, endpoints included.

Very good side

Side (of a non-border edge) : one subset of the convex set when cutting along the edge, endpoints included.

Very good side

Side (of a non-border edge) : one subset of the convex set when cutting along the edge, endpoints included.

Very good side

Side (of a non-border edge) : one subset of the convex set when cutting along the edge, endpoints included.

Proof sketch

Existing side with weaker properties

Proof sketch

Proof sketch

Proof sketch

End of proof

End of proof

Conclusion

How many flips are needed in the worst case ?

Conclusion

How many flips are needed in the worst case ?

$$
\text { number of flips } \leq c \cdot d \approx 1.95 d
$$

Conclusion

How many flips are needed in the worst case ?

$$
\frac{5}{3} d \leq \text { number of flips } \leq c \cdot d \approx 1.95 d
$$

Conclusion

How many flips are needed in the worst case?

$$
\frac{5}{3} d \leq \text { number of flips } \leq c \cdot d \approx 1.95 d
$$

Conjecture with symmetric difference
For every pair of trees T_{1} and T_{2}, there is a transformation from T_{1} to T_{2} using at most $\frac{5}{3} d$ flips.

Conclusion

How many flips are needed in the worst case ?

$$
\frac{5}{3} d \leq \text { number of flips } \leq c \cdot d \approx 1.95 d
$$

Conjecture with symmetric difference

For every pair of trees T_{1} and T_{2}, there is a transformation from T_{1} to T_{2} using at most $\frac{5}{3} d$ flips.

Conjecture with number of points

For every pair of trees T_{1} and T_{2}, there is a transformation from T_{1} to T_{2} using at most $\frac{3}{2} n$ flips.

Conclusion

How many flips are needed in the worst case ?

$$
\frac{5}{3} d \leq \text { number of flips } \leq c \cdot d \approx 1.95 d
$$

Conjecture with symmetric difference

For every pair of trees T_{1} and T_{2}, there is a transformation from T_{1} to T_{2} using at most $\frac{5}{3} d$ flips.

Conjecture with number of points

For every pair of trees T_{1} and T_{2}, there is a transformation from T_{1} to T_{2} using at most $\frac{3}{2} n$ flips.

Other models of elementary steps:

- Non-crossing flips: number of n-c flips $\leq 2 d$

Conclusion

How many flips are needed in the worst case ?

$$
\frac{5}{3} d \leq \text { number of flips } \leq c \cdot d \approx 1.95 d
$$

Conjecture with symmetric difference

For every pair of trees T_{1} and T_{2}, there is a transformation from T_{1} to T_{2} using at most $\frac{5}{3} d$ flips.

Conjecture with number of points

For every pair of trees T_{1} and T_{2}, there is a transformation from T_{1} to T_{2} using at most $\frac{3}{2} n$ flips.

Other models of elementary steps:

- Non-crossing flips: $2 d \leq$ number of $n-c$ flips $\leq 2 d$

Conclusion

How many flips are needed in the worst case ?

$$
\frac{5}{3} d \leq \text { number of flips } \leq c \cdot d \approx 1.95 d
$$

Conjecture with symmetric difference

For every pair of trees T_{1} and T_{2}, there is a transformation from T_{1} to T_{2} using at most $\frac{5}{3} d$ flips.

Conjecture with number of points

For every pair of trees T_{1} and T_{2}, there is a transformation from T_{1} to T_{2} using at most $\frac{3}{2} n$ flips.

Other models of elementary steps:

- Non-crossing flips: $2 d \leq$ number of $n-c$ flips $\leq 2 d$
- Rotations: $\frac{7}{3} d \leq$ number of rotations $\leq 3 d$

Thanks for your attention

END

Result 2 : lower bound

$\frac{3}{2} n-5$ (Hernando et al.).

Theorem (Bousquet, dM, Pierron, Wesolek)

For every $k=0 \bmod 3$, there exists a pair of trees T_{k}, T_{k}^{\prime} such that $d\left(T_{k}, T_{k}^{\prime}\right)=k$ and whose minimal transformation contains exactly $\frac{5}{3} k$ flips.

