Elementary first-order model checking for sparse graphs

Jakub Gajarský Michał Pilipczuk Marek Sokołowski *Giannos Stamoulis* Szymon Toruńczyk

Institute of Informatics, University of Warsaw, Poland

22.11.2023

Journées Graphes et Algorithmes 2023

first-order logic (FO): Atomic formulas: x = y, adj(x, y) Logical connectives: $\varphi \wedge \psi$, $\varphi \vee \psi$, $\neg \varphi$. Quantifiers: $\exists x \ \varphi$, $\forall x \ \varphi$

first-order logic (FO):

Atomic formulas: x = y, adj(x, y)

Logical connectives: $\varphi \wedge \psi$, $\varphi \vee \psi$, $\neg \varphi$.

Quantifiers: $\exists x \ \varphi, \ \forall x \ \varphi$

" P_3 is an induced subgraph of G":

$$\exists x\exists y\exists z\ \Big(\mathit{adj}(x,y) \land \mathit{adj}(y,z) \land \neg \mathit{adj}(x,z)\Big)$$

"G has a dominating set of size 3":

$$\exists x_1 \exists x_2 \exists x_3 \ \forall y \ \bigvee_{i \in \{1,2,3\}} \left(y = x_i \lor adj(x_i, y) \right)$$

first-order logic (FO):

Atomic formulas: x = y, adj(x, y)

Logical connectives: $\varphi \wedge \psi$, $\varphi \vee \psi$, $\neg \varphi$.

Quantifiers: $\exists x \ \varphi, \ \forall x \ \varphi$

" P_3 is an induced subgraph of G":

$$\exists x\exists y\exists z\ \Big(\mathit{adj}(x,y) \land \mathit{adj}(y,z) \land \neg \mathit{adj}(x,z)\Big)$$

"G has a dominating set of size 3":

$$\exists x_1 \exists x_2 \exists x_3 \ \forall y \ \bigvee_{i \in \{1,2,3\}} \left(y = x_i \lor adj(x_i,y) \right)$$

FO Model Checking

Input: a first-order formula φ and a graph G.

Question: G satisfies φ ?

first-order logic (FO):

Atomic formulas: x = y, adj(x, y)

Logical connectives: $\varphi \wedge \psi$, $\varphi \vee \psi$, $\neg \varphi$.

Quantifiers: $\exists x \ \varphi, \ \forall x \ \varphi$

" P_3 is an induced subgraph of G":

$$\exists x\exists y\exists z\ \Big(\mathit{adj}(x,y) \land \mathit{adj}(y,z) \land \neg \mathit{adj}(x,z)\Big)$$

"G has a dominating set of size 3":

$$\exists x_1 \exists x_2 \exists x_3 \ \forall y \ \bigvee_{i \in \{1,2,3\}} \left(y = x_i \lor adj(x_i,y) \right)$$

FO Model Checking

Input: a first-order formula φ and a graph G.

Question: G satisfies φ ?

▶ On general graphs, the problem is AW[*]-hard.

first-order logic (FO):

Atomic formulas: x = y, adj(x, y)

Logical connectives: $\varphi \wedge \psi$, $\varphi \vee \psi$, $\neg \varphi$.

Quantifiers: $\exists x \ \varphi, \ \forall x \ \varphi$

" P_3 is an induced subgraph of G":

$$\exists x\exists y\exists z\ \Big(\mathit{adj}(x,y) \land \mathit{adj}(y,z) \land \neg \mathit{adj}(x,z)\Big)$$

"G has a dominating set of size 3":

$$\exists x_1 \exists x_2 \exists x_3 \ \forall y \ \bigvee_{i \in \{1,2,3\}} \left(y = x_i \lor adj(x_i, y) \right)$$

FO Model Checking

Input: a first-order formula φ and a graph G.

Question: G satisfies φ ?

- ▶ On general graphs, the problem is AW[*]-hard.
- ▶ When is it FPT? i.e., solvable in time $f(|\varphi|, \mathcal{C}) \cdot |G|^c$, for some function f and $c \geq 1$.

FO model checking is **FPT** on \mathcal{C} .

```
[Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, & Toruńczyk, 2023]
[Dreier, Mählmann, & Siebertz, 2023]
[Bonnet, Dreier, Gajarský, Kreutzer, Mählmann, Simon, & Toruńczyk, 2022]
[Bonnet, Kim, Thomassé, & Watrigant, 2022]
[Hliněný, Pokrývka, & Roy, 2019]
[Gajarský, Kreutzer, Nešetřil, Ossona de Mendez, Pilipczuk, Siebertz, & Toruńczyk, 2018]
[Grohe, Kreutzer, & Siebertz, 2017]
[Eickmeyer & Kawarabayashi, 2017]
[Gajarský, Hliněný, Lokshtanov, Obdržálek, & Ramanujan, 2016]
[Dvořák, Kráľ, & Thomas, 2011]
[Dawar, Grohe, & Kreutzer, 2007]
[Flum & Grohe, 2001]
[Frick & Grohe, 2001]
[Seese, 1996]
```

FO model checking is **FPT** on C.

How general *C* can be?

```
[Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, & Toruńczyk, 2023]
[Dreier, Mählmann, & Siebertz, 2022]
[Bonnet, Dreier, Gajarský, Kreutzer, Mählmann, & Toruńczyk, 2022]
[Bonnet, Kim, Thomassé, & Watrigant, 2022]
[Hliněný, Pokrývka, & Roy, 2019]
[Gajarský, Kreutzer, Nešetřil, Ossona de Mendez, Pilipczuk, Siebertz, & Toruńczyk, 2018]
[Grohe, Kreutzer, & Siebertz, 2017]
[Eickmeyer & Kawarabayashi, 2017]
[Gajarský, Hliněný, Lokshtanov, Obdržálek, & Ramanujan, 2016]
[Dvořák, Král, & Thomas, 2011]
[Dawar, Grohe, & Kreutzer, 2001]
[Flim & Grohe, 2001]
```

Extensions of FO?

FO model checking is **FPT** on \mathcal{C} .

How general \mathcal{C} can be?

[Seese, 1996]

```
[Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny, 2023]
[Golovach, Stamoulis, & Thilikos, 2023]
[Fomin, Golovach, Sau, Stamoulis, & Thilikos, 2023]
[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny, 2022]
[Schirrmacher, Siebertz, & Vigny, 2022]
[Nešetřil, Ossona de Mendez, & Siebertz, 2022]
[Grange, 2021]
[Berkholz, Keppeler, & Schweikardt, 2018]
[Grohe & Schweikardt, 2018]
[van den Heuvel, Kreutzer, Pilipczuk, Quiroz, Rabinovich, & Siebertz, 2017]
```

```
[Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, & Toruńczyk, 2023]
[Dreier, Mählmann, & Siebertz, 2023]
[Bonnet, Dreier, Gajarský, Kreutzer, Mählmann, Simon, & Toruńczyk, 2022]
[Bonnet, Kim, Thomassé, & Watrigant, 2022]
[Hliněný, Pokrývka, & Roy, 2019]
[Gajarský, Kreutzer, Nešetřil, Ossona de Mendez, Pilipczuk, Siebertz, & Toruńczyk, 2018]
[Grohe, Kreutzer, & Siebertz, 2017]
[Eickmeyer & Kawarabayashi, 2017]
[Gajarský, Hliněný, Lokshtanov, Obdržálek, & Ramanujan, 2016]
[Dvořák, Kráľ, & Thomas, 2011]
[Dawar, Grohe, & Kreutzer, 2007]
```

Extensions of FO?

FO model checking is **FPT** on C.

How general \mathcal{C} can be?

Frick & Grohe, 2001] [Seese, 1996]

```
[Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny, 2023]
[Golovach, Stamoulis, & Thilikos, 2023]
[Fomin, Golovach, Sau, Stamoulis, & Thilikos, 2023]
[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny, 2022]
[Schirrmacher, Siebertz, & Vigny, 2022]
[Nešetřil, Ossona de Mendez, & Siebertz, 2022]
[Grange, 2021]
[Berkholz, Keppeler, & Schweikardt, 2018]
[Grohe & Schweikardt, 2018]
[van den Heuvel, Kreutzer, Pilipczuk, Quiroz, Rabinovich, & Siebertz, 2017]
```

What about "elementarily-FPT"?

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$2^{2^{\sum_{i=2}^{2^{i}arphi}}}\cdot |G|^c, ext{ for some constant } c\geq 1,$$

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$2^{2^{\cdot 2^{|arphi|}}} \cdot |G|^c, ext{ for some constant } c \geq 1,$$
 height $g(|arphi|)$

even for the class \mathcal{T} of trees. [Frick & Grohe, 2002]

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$2^{2^{\sum_{i=2}^{2^{|arphi|}}}}\cdot |G|^c, ext{ for some constant } c\geq 1,$$

even for the class \mathcal{T} of trees. [Frick & Grohe, 2002]

Task: *Improve* the (parametric) dependence on $|\varphi|$ in the running time.

FO Model Checking (on C)

Input: a first-order formula φ and a graph $G \in \mathcal{C}$

Question: G satisfies φ ?

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$2^{2^{\sum_{i}2^{|arphi|}}}\cdot |G|^c, ext{ for some constant } c\geq 1,$$
 height $g(|arphi|)$

even for the class \mathcal{T} of trees. [Frick & Grohe, 2002]

Task: *Improve* the (parametric) dependence on $|\varphi|$ in the running time.

FO Model Checking (on C)

Input: a first-order formula φ and a graph $G \in \mathcal{C}$

Question: G satisfies φ ?

Meta-parameter: h_C

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$2^{2^{\sum_{i}2^{|arphi|}}}\cdot |G|^c, ext{ for some constant } c\geq 1,$$
 height $g(|arphi|)$

even for the class \mathcal{T} of trees. [Frick & Grohe, 2002]

Task: *Improve* the (parametric) dependence on $|\varphi|$ in the running time.

FO Model Checking (on C)

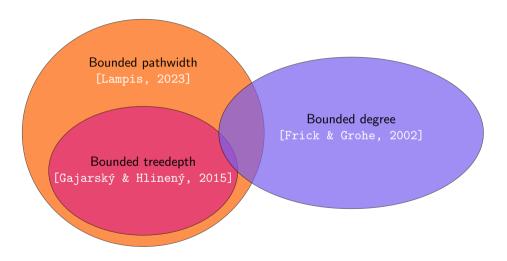
Input: a first-order formula φ and a graph $G \in \mathcal{C}$

Question: G satisfies φ ?

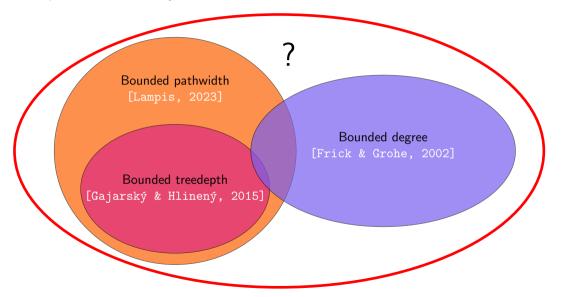
Meta-parameter: h_C

Elementarily-FPT: running time
$$\underbrace{2^{2^{\cdot 2^{|\varphi|}}}}_{\text{height } g(h_C)} \cdot |G|^c$$

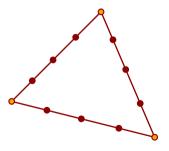
The map of the elementarily-FPT universe



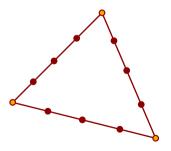
The map of the elementarily-FPT universe



• $H^{(\leq r)}$:= replace every edge of H with a path of at most r internal vertices.



- $H^{(\leq r)}$:= replace every edge of H with a path of at most r internal vertices.
- H is an r-shallow topological minor of G, if $H^{(\leq r)} \subseteq G$.

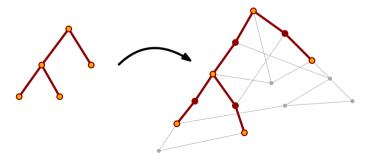


- $H^{(\leq r)}$:= replace every edge of H with a path of at most r internal vertices.
- H is an r-shallow topological minor of G, if $H^{(\leq r)} \subseteq G$.
- TopMinors_r(\mathcal{C}) := { $H \mid \exists G \in \mathcal{C} : H \text{ is an } r\text{-shallow topological minor of } G$ }

- $H^{(\leq r)}$:= replace every edge of H with a path of at most r internal vertices.
- H is an r-shallow topological minor of G, if $H^{(\leq r)} \subseteq G$.
- TopMinors_r(\mathcal{C}) := { $H \mid \exists G \in \mathcal{C} : H \text{ is an } r\text{-shallow topological minor of } G$ }
- ullet $\mathcal{T}_d:=$ class of all trees of depth d. $\Big($ \bigwedge has depth $2.\Big)$

- $H^{(\leq r)}$:= replace every edge of H with a path of at most r internal vertices.
- H is an r-shallow topological minor of G, if $H^{(\leq r)} \subseteq G$.
- TopMinors_r(\mathcal{C}) := { $H \mid \exists G \in \mathcal{C} : H \text{ is an } r\text{-shallow topological minor of } G$ }
- ullet $\mathcal{T}_d:=$ class of all trees of depth d. $\Big($ \bigwedge has depth $2.\Big)$
- The *tree rank* of a graph class C: max $\{d \in \mathbb{N} \mid \exists r \in \mathbb{N} : \mathcal{T}_d \subseteq \mathsf{TopMinors}_r(C)\}$.

- $H^{(\leq r)}$:= replace every edge of H with a path of at most r internal vertices.
- H is an r-shallow topological minor of G, if $H^{(\leq r)} \subseteq G$.
- TopMinors_r(\mathcal{C}) := { $H \mid \exists G \in \mathcal{C} : H \text{ is an } r\text{-shallow topological minor of } G$ }
- ullet $\mathcal{T}_d:=$ class of all trees of depth d. $\Big($ \bigwedge has depth $2.\Big)$
- The *tree rank* of a graph class C: max $\{d \in \mathbb{N} \mid \exists r \in \mathbb{N} : \mathcal{T}_d \subseteq \mathsf{TopMinors}_r(C)\}$.



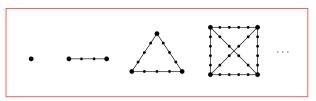
ullet The class ${\mathcal T}$ of all trees has unbounded tree rank.

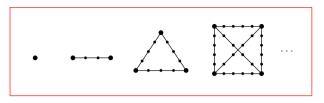
- ullet The class ${\mathcal T}$ of all trees has unbounded tree rank.
- \mathcal{T}_d has tree rank d.

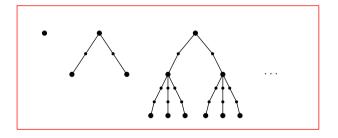
- ullet The class ${\mathcal T}$ of all trees has unbounded tree rank.
- \mathcal{T}_d has tree rank d.
- If C excludes some tree T as a topological minor, it has tree rank smaller than the depth of T.

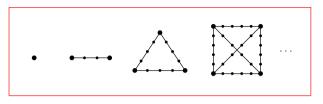
- ullet The class ${\mathcal T}$ of all trees has unbounded tree rank.
- \mathcal{T}_d has tree rank d.
- If C excludes some tree T as a topological minor, it has tree rank smaller than the depth of T.
- ullet C has bounded degree if and only if $\mathcal C$ has tree rank 1.

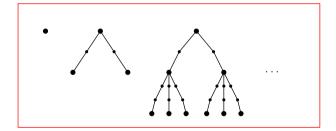
- ullet The class ${\mathcal T}$ of all trees has unbounded tree rank.
- \mathcal{T}_d has tree rank d.
- If C excludes some tree T as a topological minor, it has tree rank smaller than the depth of T.
- ullet C has bounded degree if and only if $\mathcal C$ has tree rank 1.
- The class C of graphs of pathwidth d has tree rank exactly d+1.





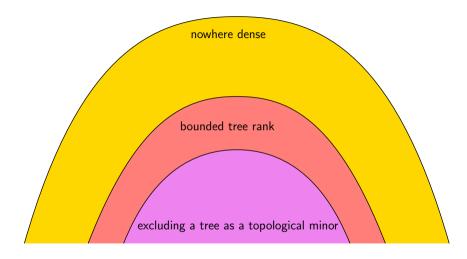


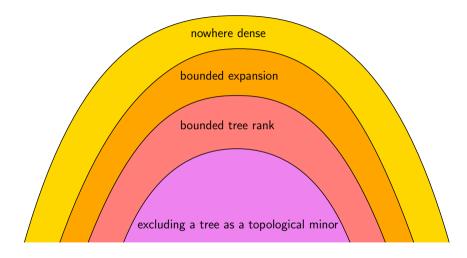


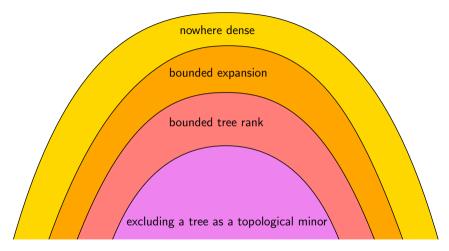


Every tree as a topological minor and tree rank 2









Fact: A graph of minimum degree δ contains every tree on δ vertices as a subgraph. bounded tree rank \implies bounded degeneracy \implies bounded expansion

 $T_k^d := \text{tree of depth } d \text{ and branching } k.$

Tree rank of C:

the least number $d \in \mathbb{N}$ such that

for every $r \in \mathbb{N}$ there is $k \in \mathbb{N}$ s.t. no graph in \mathcal{C} contains T_k^{d+1} as an r-shallow topological minor.

 $T_k^d := \text{tree of depth } d \text{ and branching } k.$

Tree rank of C:

the least number $d \in \mathbb{N}$ such that

for every $r \in \mathbb{N}$ there is $k \in \mathbb{N}$ s.t. no graph in C contains T_k^{d+1} as an r-shallow topological minor.

Tree rank of C:

the least number $d \in \mathbb{N}$ such that there is a function $f : \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$, no graph in \mathcal{C} contains $T_{f(r)}^{d+1}$ as an r-shallow topological minor.

 $T_k^d :=$ tree of depth d and branching k.

Tree rank of C:

the least number $d \in \mathbb{N}$ such that

for every $r \in \mathbb{N}$ there is $k \in \mathbb{N}$ s.t. no graph in C contains T_k^{d+1} as an r-shallow topological minor.

Tree rank of C:

the least number $d \in \mathbb{N}$ such that there is a function $f : \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$, no graph in \mathcal{C} contains $T_{f(r)}^{d+1}$ as an r-shallow topological minor.

Elementary tree rank of C:

the least number $d \in \mathbb{N}$ such that there is an elementary function $f : \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$, no graph in \mathcal{C} contains $T_{f(r)}^{d+1}$ as an r-shallow topological minor.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]

If $\mathcal C$ has bounded elementary tree rank, then FO model checking is elementarily-FPT on $\mathcal C$.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]

If $\mathcal C$ has bounded elementary tree rank, then FO model checking is elementarily-FPT on $\mathcal C$.

Corollary

If $\mathcal C$ excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on $\mathcal C$.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]

If $\mathcal C$ has bounded elementary tree rank, then FO model checking is elementarily-FPT on $\mathcal C$.

Corollary

If $\mathcal C$ excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on $\mathcal C$.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]

Assume AW[*] \neq FPT. Let $\mathcal C$ be a monotone graph class.

If FO model checking is elementarily-FPT on C, then C has bounded tree rank.

Theorem [Gajarský, Pilipczuk, Sokołowski, *S.*, Toruńczyk, 2023]

If $\mathcal C$ has bounded elementary tree rank, then FO model checking is elementarily-FPT on $\mathcal C$.

Corollary

If $\mathcal C$ excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on $\mathcal C$.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]

Assume AW[*] \neq FPT. Let $\mathcal C$ be a monotone graph class.

If FO model checking is elementarily-FPT on C, then C has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.

Lemma

Let C be a graph class of tree rank d.

Every formula φ is equivalent on $\mathcal C$ to a formula ψ of alternation rank 3d.

Also, if C has elementary tree rank d, then $|\psi|$ is elementary in $|\varphi|$.

Lemma

Let C be a graph class of tree rank d.

Every formula φ is equivalent on \mathcal{C} to a formula ψ of alternation rank 3d.

Also, if \mathcal{C} has elementary tree rank d, then $|\psi|$ is elementary in $|\varphi|$.

Lemma

Let C be a graph class of tree rank d.

Every formula φ is equivalent on $\mathcal C$ to a formula ψ of alternation rank 3d.

Also, if \mathcal{C} has elementary tree rank d, then $|\psi|$ is elementary in $|\varphi|$.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]

Let $\mathcal C$ be a monotone graph class. The following are equivalent:

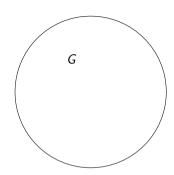
- \circ $\mathcal C$ has bounded tree rank
- \bullet $\exists k \in \mathbb{N}$ such that for every formula φ , there is an equivalent (on \mathcal{C}) formula ψ of alternation rank k.

m-batched splitter game of radius r:

m-batched splitter game of radius r:

Two players: Splitter and Localizer.

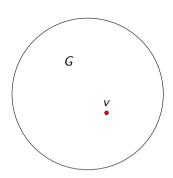
m-batched splitter game of radius r:



m-batched splitter game of radius r:

Two players: Splitter and Localizer. In each round of the game:

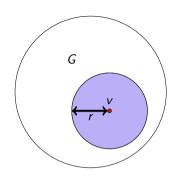
• Localizer picks $v \in V(G)$ and restricts to $G' := B_G^r(v)$.



m-batched splitter game of radius r:

Two players: Splitter and Localizer. In each round of the game:

• Localizer picks $v \in V(G)$ and restricts to $G' := B_G^r(v)$.



m-batched splitter game of radius r:

Two players: Splitter and Localizer. In each round of the game:

• Localizer picks $v \in V(G)$ and restricts to $G' := B_G^r(v)$.

m-batched splitter game of radius r:

- Localizer picks $v \in V(G)$ and restricts to $G' := B_G^r(v)$.
- Splitter deletes at most *m* vertices from *G'* and the game continues on the obtained graph.

m-batched splitter game of radius r:

- Localizer picks $v \in V(G)$ and restricts to $G' := B_G^r(v)$.
- Splitter deletes at most *m* vertices from *G'* and the game continues on the obtained graph.

m-batched splitter game of radius r:

- Localizer picks $v \in V(G)$ and restricts to $G' := B_G^r(v)$.
- Splitter deletes at most m vertices from G' and the game continues on the obtained graph.

m-batched splitter game of radius r:

- Localizer picks $v \in V(G)$ and restricts to $G' := B_G^r(v)$.
- Splitter deletes at most m vertices from G'
 and the game continues on the obtained graph.
- If no vertices remain, Splitter wins the game.

m-batched splitter game of radius r:

Two players: Splitter and Localizer. In each round of the game:

- Localizer picks $v \in V(G)$ and restricts to $G' := B_G^r(v)$.
- Splitter deletes at most m vertices from G'
 and the game continues on the obtained graph.
- If no vertices remain, Splitter wins the game.

Lemma

Let $d \in \mathbb{N}$. The following conditions are equivalent:

(1) C has (elementary) tree rank d,

m-batched splitter game of radius r:

Two players: Splitter and Localizer. In each round of the game:

- Localizer picks $v \in V(G)$ and restricts to $G' := B_G^r(v)$.
- Splitter deletes at most m vertices from G'
 and the game continues on the obtained graph.
- If no vertices remain, Splitter wins the game.

Lemma

Let $d \in \mathbb{N}$. The following conditions are equivalent:

- (1) C has (elementary) tree rank d,
- (2) There is an (elementary) function $f: \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$ Splitter wins the f(r)-batched splitter game of radius r in at most d rounds, on every $G \in \mathcal{C}$.

How to do elementary FO model checking?

How to do elementary FO model checking?

Compute the "constant alternation rank"-type of the graph,

using FO model checking algorithm on bounded expansion classes [Dvořák, Král, & Thomas, 2014]

(which is elementarily-FPT for sentences of *constant* alternation rank).

How to do elementary FO model checking?

Compute the "constant alternation rank"-type of the graph,

using FO model checking algorithm on bounded expansion classes [Dvořák, Král, & Thomas, 2014]

(which is elementarily-FPT for sentences of *constant* alternation rank).

The collapse of the FO alternation hierarchy on bounded tree rank classes implies the following:

If two vertices have the same "constant alternation rank"-type, then they have the same q-type.

Conclusion

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]

If $\mathcal C$ has bounded elementary tree rank, then FO model checking is elementarily-FPT on $\mathcal C$.

Corollary

If $\mathcal C$ excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on $\mathcal C$.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]

Assume AW[*] \neq FPT. Let $\mathcal C$ be a monotone graph class.

If FO model checking is elementarily-FPT on C, then C has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.

Conclusion

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]

If $\mathcal C$ has bounded elementary tree rank, then FO model checking is elementarily-FPT on $\mathcal C$.

Corollary

If $\mathcal C$ excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on $\mathcal C$.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]

Assume AW[*] \neq FPT. Let \mathcal{C} be a monotone graph class.

If FO model checking is elementarily-FPT on \mathcal{C} , then \mathcal{C} has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.

What about dense classes?

Merci!

Tree rank of C:

the largest number $d \in \mathbb{N}$ such that there is an $r \in \mathbb{N}$ such that $\mathcal{T}_d \subseteq \mathsf{TopMinors}_r(\mathcal{C})$.

Tree rank of C:

the largest number $d\in\mathbb{N}$ such that there is an $r\in\mathbb{N}$ such that $\mathcal{T}_d\subseteq\mathsf{TopMinors}_r(\mathcal{C}).$

Rank of C:

the largest number $d \in \mathbb{N}$ such that $\mathcal C$ transduces $\mathcal T_d$.

Tree rank of C:

the largest number $d \in \mathbb{N}$ such that there is an $r \in \mathbb{N}$ such that $\mathcal{T}_d \subseteq \mathsf{TopMinors}_r(\mathcal{C})$.

Rank of C:

the largest number $d \in \mathbb{N}$ such that $\mathcal C$ transduces $\mathcal T_d$.

Conjecture:

A hereditary graph class $\mathcal C$ has elementarily-FPT model checking if and only if it has bounded rank.

Tree rank of C:

the largest number $d \in \mathbb{N}$ such that there is an $r \in \mathbb{N}$ such that $\mathcal{T}_d \subseteq \mathsf{TopMinors}_r(\mathcal{C})$.

Rank of C:

the largest number $d \in \mathbb{N}$ such that $\mathcal C$ transduces $\mathcal T_d$.

Conjecture:

A hereditary graph class $\mathcal C$ has elementarily-FPT model checking if and only if it has bounded rank.

Conjecture:

Let C be a hereditary graph class.

 $\mathcal C$ has bounded rank $\iff \exists k \in \mathbb N$ such that every φ is equivalent on $\mathcal C$ to a ψ of alternation rank k.

A graph class $\ensuremath{\mathcal{C}}$ is weakly sparse if it avoids some biclique as a subgraph.

A graph class ${\mathcal C}$ is weakly sparse if it avoids some biclique as a subgraph.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]

Let $\mathcal C$ be a weakly sparse graph class. $\mathcal C$ has bounded tree rank $\iff \mathcal C$ has bounded rank.

A graph class $\mathcal C$ is weakly sparse if it avoids some biclique as a subgraph.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]

Let \mathcal{C} be a weakly sparse graph class. \mathcal{C} has bounded tree rank $\iff \mathcal{C}$ has bounded rank.

Conjecture:

A hereditary graph class $\mathcal C$ has elementarily-FPT model checking if and only if it has bounded rank.

Conjecture:

Let C be a hereditary graph class.

 \mathcal{C} has bounded rank $\iff \exists k \in \mathbb{N}$ such that every φ is equivalent on \mathcal{C} to a ψ of alternation rank k.