Elementary first-order model checking for sparse graphs

Jakub Gajarský
Michał Pilipczuk
Marek Sokołowski
Giannos Stamoulis
Szymon Toruńczyk
Institute of Informatics, University of Warsaw, Poland

22.11.2023

Journées Graphes et Algorithmes 2023

Model checking first-order formulas (on graphs)

first-order logic (FO):
Atomic formulas: $x=y, \operatorname{adj}(x, y)$
Logical connectives: $\varphi \wedge \psi, \varphi \vee \psi, \neg \varphi$.
Quantifiers: $\exists x \varphi, \forall x \varphi$

Model checking first-order formulas (on graphs)

$$
\text { " } P_{3} \text { is an induced subgraph of } G \text { ": }
$$

first-order logic (FO):
Atomic formulas: $x=y, \operatorname{adj}(x, y)$
Logical connectives: $\varphi \wedge \psi, \varphi \vee \psi, \neg \varphi$. Quantifiers: $\exists x \varphi, \forall x \varphi$

$$
\exists x \exists y \exists z(\operatorname{adj}(x, y) \wedge \operatorname{adj}(y, z) \wedge \neg \operatorname{adj}(x, z))
$$

"G has a dominating set of size 3":
$\exists x_{1} \exists x_{2} \exists x_{3} \forall y \bigvee_{i \in\{1,2,3\}}\left(y=x_{i} \vee \operatorname{adj}\left(x_{i}, y\right)\right)$

Model checking first-order formulas (on graphs)

$$
\text { " } P_{3} \text { is an induced subgraph of } G \text { ": }
$$

first-order logic (FO):
Atomic formulas: $x=y, \operatorname{adj}(x, y)$
Logical connectives: $\varphi \wedge \psi, \varphi \vee \psi, \neg \varphi$.
Quantifiers: $\exists x \varphi, \forall x \varphi$

$$
\exists x \exists y \exists z(\operatorname{adj}(x, y) \wedge \operatorname{adj}(y, z) \wedge \neg \operatorname{adj}(x, z))
$$

"G has a dominating set of size 3":
$\exists x_{1} \exists x_{2} \exists x_{3} \forall y \bigvee_{i \in\{1,2,3\}}\left(y=x_{i} \vee \operatorname{adj}\left(x_{i}, y\right)\right)$

FO Model Checking

Input: a first-order formula φ and a graph G. Question: G satisfies φ ?

Model checking first-order formulas (on graphs)

first-order logic (FO):
Atomic formulas: $x=y, \operatorname{adj}(x, y)$
Logical connectives: $\varphi \wedge \psi, \varphi \vee \psi, \neg \varphi$.
Quantifiers: $\exists x \varphi, \forall x \varphi$

$$
\text { " } P_{3} \text { is an induced subgraph of } G \text { ": }
$$

$$
\exists x \exists y \exists z(\operatorname{adj}(x, y) \wedge \operatorname{adj}(y, z) \wedge \neg \operatorname{adj}(x, z))
$$

"G has a dominating set of size 3":

$$
\exists x_{1} \exists x_{2} \exists x_{3} \forall y \bigvee_{i \in\{1,2,3\}}\left(y=x_{i} \vee \operatorname{adj}\left(x_{i}, y\right)\right)
$$

FO Model Checking

Input: a first-order formula φ and a graph G. Question: G satisfies φ ?

- On general graphs, the problem is AW[*]-hard.

Model checking first-order formulas (on graphs)

first-order logic (FO):
Atomic formulas: $x=y, \operatorname{adj}(x, y)$
Logical connectives: $\varphi \wedge \psi, \varphi \vee \psi, \neg \varphi$.
Quantifiers: $\exists x \varphi, \forall x \varphi$
" P_{3} is an induced subgraph of G ":

$$
\exists x \exists y \exists z(\operatorname{adj}(x, y) \wedge \operatorname{adj}(y, z) \wedge \neg \operatorname{adj}(x, z))
$$

"G has a dominating set of size 3":

$$
\exists x_{1} \exists x_{2} \exists x_{3} \forall y \bigvee_{i \in\{1,2,3\}}\left(y=x_{i} \vee \operatorname{adj}\left(x_{i}, y\right)\right)
$$

FO Model Checking

Input: a first-order formula φ and a graph G. Question: G satisfies φ ?

- On general graphs, the problem is AW[*]-hard.
- When is it FPT? i.e., solvable in time $f(|\varphi|, \mathcal{C}) \cdot|G|^{c}$, for some function f and $c \geq 1$.

The three components of the model checking question

FO model checking is FPT on \mathcal{C}.

The three components of the model checking question

[Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, \& Toruńczyk, 2023]
[Dreier, Mählmann, \& Siebertz, 2023]
[Bonnet, Dreier, Gajarský, Kreutzer, Mählmann, Simon, \& Toruńczyk, 2022]
[Bonnet, Kim, Thomassé, \& Watrigant, 2022]
[Hliněný, Pokrývka, \& Roy, 2019]
[Gajarský, Kreutzer, Nešetřil, Ossona de Mendez, Pilipczuk, Siebertz, \& Toruńczyk, 2018]
[Grohe, Kreutzer, \& Siebertz, 2017]
[Eickmeyer \& Kawarabayashi, 2017]
[Gajarský, Hliněný, Lokshtanov, Obdržálek, \& Ramanujan, 2016]
[Dvořák, Král, \& Thomas, 2011]
[Dawar, Grohe, \& Kreutzer, 2007]
[Flum \& Grohe, 2001]
[Frick \& Grohe, 2001]
[Seese, 1996]
FO model checking is FPT on \mathcal{C}.
How general \mathcal{C} can be?

The three components of the model checking question

[Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, \& Toruńczyk, 2023]
[Dreier, Mählmann, \& Siebertz, 2023]
[Bonnet, Dreier, Gajarský, Kreutzer, Mählmann, Simon, \& Toruńczyk, 2022]
[Bonnet, Kim, Thomassé, \& Watrigant, 2022]
[Hliněný, Pokrývka, \& Roy, 2019]
[Gajarský, Kreutzer, Nešetřil, Ossona de Mendez, Pilipczuk, Siebertz, \& Toruńczyk, 2018]
[Grohe, Kreutzer, \& Siebertz, 2017]
[Eickmeyer \& Kawarabayashi, 2017]
[Gajarský, Hliněný, Lokshtanov, Obdržálek, \& Ramanujan, 2016]
[Dvořák, Kráľ, \& Thomas, 2011]
[Dawar, Grohe, \& Kreutzer, 2007]
[Flum \& Grohe, 2001]
[Frick \& Grohe, 2001]
[Seese, 1996]

Extensions of FO ?

FO model checking is FPT on \mathcal{C}.

[Schirrmacher, Siebertz, Stamoulis, Thilikos, \& Vigny, 2023]
[Golovach, Stamoulis, \& Thilikos, 2023]
[Fomin, Golovach, Sau, Stamoulis, \& Thilikos, 2023]
[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, \& Vigny, 2022]
[Schirrmacher, Siebertz, \& Vigny, 2022]
[Nešetřil, Ossona de Mendez, \& Siebertz, 2022]
[Grange, 2021]
[Berkholz, Keppeler, \& Schweikardt, 2018]
[Grohe \& Schweikardt, 2018]
[van den Heuvel, Kreutzer, Pilipczuk, Quiroz, Rabinovich, \& Siebertz, 2017]

The three components of the model checking question

[Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, \& Toruńczyk, 2023]
[Dreier, Mählmann, \& Siebertz, 2023]
[Bonnet, Dreier, Gajarský, Kreutzer, Mählmann, Simon, \& Toruńczyk, 2022]
[Bonnet, Kim, Thomassé, \& Watrigant, 2022]
[Hliněný, Pokrývka, \& Roy, 2019]
[Gajarský, Kreutzer, Nešetřil, Ossona de Mendez, Pilipczuk, Siebertz, \& Toruńczyk, 2018]
[Grohe, Kreutzer, \& Siebertz, 2017]
[Eickmeyer \& Kawarabayashi, 2017]
[Gajarský, Hliněný, Lokshtanov, Obdržálek, \& Ramanujan, 2016]
[Dvořák, Král, \& Thomas, 2011]
[Dawar, Grohe, \& Kreutzer, 2007]
[Flum \& Grohe, 2001]
[Frick \& Grohe, 2001]
[Seese, 1996]

Extensions of FO ?

FO model checking is FPT on \mathcal{C}.
How general \mathcal{C} can be?
[Schirrmacher, Siebertz, Stamoulis, Thilikos, \& Vigny, 2023]
[Golovach, Stamoulis, \& Thilikos, 2023]
[Fomin, Golovach, Sau, Stamoulis, \& Thilikos, 2023]
[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, \& Vigny, 2022]
[Schirrmacher, Siebertz, \& Vigny, 2022]
[Nešetřil, Ossona de Mendez, \& Siebertz, 2022]
[Grange, 2021]

What about
 "elementarily-FPT"?

[Berkholz, Keppeler, \& Schweikardt, 2018]
[Grohe \& Schweikardt, 2018]
[van den Heuvel, Kreutzer, Pilipczuk, Quiroz, Rabinovich, \& Siebertz, 2017]
"Elementarily-FPT" programme

"Elementarily-FPT" programme

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

"Elementarily-FPT" programme

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$
\begin{aligned}
& { }_{2}|\varphi| \\
& \underbrace{2^{2}} \cdot|G|^{c} \text {, for some constant } c \geq 1 \text {, } \\
& \text { height } g(|\varphi|)
\end{aligned}
$$

"Elementarily-FPT" programme

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$
\underbrace{2^{2^{2 \cdot 2^{|\varphi|}}}}_{\text {height } g(|\varphi|)} \cdot|G|^{c} \text {, for some constant } c \geq 1 \text {, }
$$

even for the class \mathcal{T} of trees. [Frick \& Grohe, 2002]
"Elementarily-FPT" programme
What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$
\underbrace{2^{2^{2 \mid}}}_{\text {height } g(|\varphi|)} \cdot|G|^{c} \text {, for some constant } c \geq 1
$$

even for the class \mathcal{T} of trees. [Frick \& Grohe, 2002]
Task: Improve the (parametric) dependence on $|\varphi|$ in the running time.
FO Model Checking (on \mathcal{C})
Input: a first-order formula φ and a graph $G \in \mathcal{C}$ Question: G satisfies φ ?
"Elementarily-FPT" programme
What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$
\underbrace{2^{2 \cdot \cdot^{2|\varphi|}}}_{\text {height } g(|\varphi|)} \cdot|G|^{c} \text {, for some constant } c \geq 1 \text {, }
$$

even for the class \mathcal{T} of trees. [Frick \& Grohe, 2002]
Task: Improve the (parametric) dependence on $|\varphi|$ in the running time.
FO Model Checking (on \mathcal{C}) Input: a first-order formula φ and a graph $G \in \mathcal{C}$

$$
\text { Meta-parameter: } h_{\mathcal{C}}
$$

"Elementarily-FPT" programme
What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$
\underbrace{2^{2 \cdot 2^{2|\varphi|}}}_{\text {height } g(|\varphi|)} \cdot|G|^{c}, \text { for some constant } c \geq 1 \text {, }
$$

even for the class \mathcal{T} of trees. [Frick \& Grohe, 2002]
Task: Improve the (parametric) dependence on $|\varphi|$ in the running time.

FO Model Checking (on \mathcal{C}) Input: a first-order formula φ and a graph $G \in \mathcal{C}$ Question: G satisfies φ ?

Elementarily-FPT: running time $\underbrace{2^{2 \cdot 2^{2|\varphi|}}}_{\text {height } g\left(h_{c}\right)} \cdot|G|^{c}$

Meta-parameter: $h_{\mathcal{C}}$

The map of the elementarily-FPT universe

The map of the elementarily-FPT universe

Definitions:

Definitions:

- $H^{(\leq r)}:=$ replace every edge of H with a path of at most r internal vertices.

Definitions:

- $H^{(\leq r)}:=$ replace every edge of H with a path of at most r internal vertices.
- H is an r-shallow topological minor of G, if $H^{(\leq r)} \subseteq G$.

Definitions:

- $H^{(\leq r)}:=$ replace every edge of H with a path of at most r internal vertices.
- H is an r-shallow topological minor of G, if $H^{(\leq r)} \subseteq G$.
- TopMinors $_{r}(\mathcal{C}):=\{H \mid \exists G \in \mathcal{C}: H$ is an r-shallow topological minor of $G\}$

Definitions:

- $H^{(\leq r)}:=$ replace every edge of H with a path of at most r internal vertices.
- H is an r-shallow topological minor of G, if $H^{(\leq r)} \subseteq G$.
- TopMinors ${ }_{r}(\mathcal{C}):=\{H \mid \exists G \in \mathcal{C}: H$ is an r-shallow topological minor of $G\}$
- $\mathcal{T}_{d}:=$ class of all trees of depth $d .(\ldots$ has depth 2.)

Definitions:

- $H^{(\leq r)}:=$ replace every edge of H with a path of at most r internal vertices.
- H is an r-shallow topological minor of G, if $H^{(\leq r)} \subseteq G$.
- TopMinors $_{r}(\mathcal{C}):=\{H \mid \exists G \in \mathcal{C}: H$ is an r-shallow topological minor of $G\}$
- $\mathcal{T}_{d}:=$ class of all trees of depth $d .(\ldots$ has depth 2.)
- The tree rank of a graph class $\mathcal{C}: \max \left\{d \in \mathbb{N} \mid \exists r \in \mathbb{N}: \mathcal{T}_{d} \subseteq \operatorname{TopMinors}_{r}(\mathcal{C})\right\}$.

Definitions:

- $H^{(\leq r)}:=$ replace every edge of H with a path of at most r internal vertices.
- H is an r-shallow topological minor of G, if $H^{(\leq r)} \subseteq G$.
- TopMinors $_{r}(\mathcal{C}):=\{H \mid \exists G \in \mathcal{C}: H$ is an r-shallow topological minor of $G\}$
- $\mathcal{T}_{d}:=$ class of all trees of depth d. (\mathbb{M} has depth 2.)
- The tree rank of a graph class $\mathcal{C}: \max \left\{d \in \mathbb{N} \mid \exists r \in \mathbb{N}: \mathcal{T}_{d} \subseteq\right.$ TopMinors $\left._{r}(\mathcal{C})\right\}$.

What is bounded tree rank?

- The class \mathcal{T} of all trees has unbounded tree rank.

What is bounded tree rank?

- The class \mathcal{T} of all trees has unbounded tree rank.
- \mathcal{T}_{d} has tree rank d.

What is bounded tree rank?

- The class \mathcal{T} of all trees has unbounded tree rank.
- \mathcal{T}_{d} has tree rank d.
- If \mathcal{C} excludes some tree T as a topological minor, it has tree rank smaller than the depth of T.

What is bounded tree rank?

- The class \mathcal{T} of all trees has unbounded tree rank.
- \mathcal{T}_{d} has tree rank d.
- If \mathcal{C} excludes some tree T as a topological minor, it has tree rank smaller than the depth of T.
- \mathcal{C} has bounded degree if and only if \mathcal{C} has tree rank 1 .

What is bounded tree rank?

- The class \mathcal{T} of all trees has unbounded tree rank.
- \mathcal{T}_{d} has tree rank d.
- If \mathcal{C} excludes some tree T as a topological minor, it has tree rank smaller than the depth of T.
- \mathcal{C} has bounded degree if and only if \mathcal{C} has tree rank 1 .
- The class \mathcal{C} of graphs of pathwidth d has tree rank exactly $d+1$.

Is this just excluding a tree as a topological minor?

Is this just excluding a tree as a topological minor? NO

Is this just excluding a tree as a topological minor? NO

Is this just excluding a tree as a topological minor? NO

Is this just excluding a tree as a topological minor? NO

Every tree as a topological minor and tree rank 2

Fact: A graph of minimum degree δ contains every tree on δ vertices as a subgraph. bounded tree rank \Longrightarrow bounded degeneracy \Longrightarrow bounded expansion
$T_{k}^{d}:=$ tree of depth d and branching k.

Tree rank of \mathcal{C} :

the least number $d \in \mathbb{N}$ such that
for every $r \in \mathbb{N}$ there is $k \in \mathbb{N}$ s.t. no graph in \mathcal{C} contains T_{k}^{d+1} as an r-shallow topological minor.
$T_{k}^{d}:=$ tree of depth d and branching k.

Tree rank of \mathcal{C} :

the least number $d \in \mathbb{N}$ such that
for every $r \in \mathbb{N}$ there is $k \in \mathbb{N}$ s.t. no graph in \mathcal{C} contains T_{k}^{d+1} as an r-shallow topological minor.

Tree rank of \mathcal{C} :

the least number $d \in \mathbb{N}$ such that there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that
for every $r \in \mathbb{N}$, no graph in \mathcal{C} contains $T_{f(r)}^{d+1}$ as an r-shallow topological minor.
$T_{k}^{d}:=$ tree of depth d and branching k.

Tree rank of \mathcal{C} :

the least number $d \in \mathbb{N}$ such that
for every $r \in \mathbb{N}$ there is $k \in \mathbb{N}$ s.t. no graph in \mathcal{C} contains T_{k}^{d+1} as an r-shallow topological minor.

Tree rank of \mathcal{C} :

the least number $d \in \mathbb{N}$ such that there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that
for every $r \in \mathbb{N}$, no graph in \mathcal{C} contains $T_{f(r)}^{d+1}$ as an r-shallow topological minor.

Elementary tree rank of \mathcal{C} :

the least number $d \in \mathbb{N}$ such that there is an elementary function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $r \in \mathbb{N}$, no graph in \mathcal{C} contains $T_{f(r)}^{d+1}$ as an r-shallow topological minor.

Elementary FO model checking on sparse classes

Elementary FO model checking on sparse classes

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]
If \mathcal{C} has bounded elementary tree rank, then FO model checking is elementarily-FPT on \mathcal{C}.

Elementary FO model checking on sparse classes

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]
If \mathcal{C} has bounded elementary tree rank, then FO model checking is elementarily- FPT on \mathcal{C}.

Corollary

If \mathcal{C} excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on \mathcal{C}.

Elementary FO model checking on sparse classes

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]
If \mathcal{C} has bounded elementary tree rank, then FO model checking is elementarily- FPT on \mathcal{C}.

Corollary

If \mathcal{C} excludes a fixed tree as a topological minor, then FO model checking is elementarily- FPT on \mathcal{C}.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]
Assume $\mathrm{AW}\left[{ }^{*}\right] \neq \mathrm{FPT}$. Let \mathcal{C} be a monotone graph class.
If FO model checking is elementarily-FPT on \mathcal{C}, then \mathcal{C} has bounded tree rank.

Elementary FO model checking on sparse classes

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]
If \mathcal{C} has bounded elementary tree rank, then FO model checking is elementarily- FPT on \mathcal{C}.

Corollary

If \mathcal{C} excludes a fixed tree as a topological minor, then FO model checking is elementarily- FPT on \mathcal{C}.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]
Assume $\mathrm{AW}\left[{ }^{*}\right] \neq \mathrm{FPT}$. Let \mathcal{C} be a monotone graph class.
If FO model checking is elementarily-FPT on \mathcal{C}, then \mathcal{C} has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.

Collapse of FO alternation hierarchy

Collapse of FO alternation hierarchy

Lemma

Let \mathcal{C} be a graph class of tree rank d.
Every formula φ is equivalent on \mathcal{C} to a formula ψ of alternation rank $3 d$.
Also, if \mathcal{C} has elementary tree rank d, then $|\psi|$ is elementary in $|\varphi|$.

Collapse of FO alternation hierarchy

Lemma

Let \mathcal{C} be a graph class of tree rank d.
Every formula φ is equivalent on \mathcal{C} to a formula ψ of alternation rank $3 d$.
Also, if \mathcal{C} has elementary tree rank d, then $|\psi|$ is elementary in $|\varphi|$.

Collapse of FO alternation hierarchy

Lemma

Let \mathcal{C} be a graph class of tree rank d.
Every formula φ is equivalent on \mathcal{C} to a formula ψ of alternation rank $3 d$.
Also, if \mathcal{C} has elementary tree rank d, then $|\psi|$ is elementary in $|\varphi|$.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]
Let \mathcal{C} be a monotone graph class. The following are equivalent:

- \mathcal{C} has bounded tree rank
- $\exists k \in \mathbb{N}$ such that for every formula φ, there is an equivalent (on \mathcal{C}) formula ψ of alternation rank k.

Structural characterization of bounded tree rank

m-batched splitter game of radius r :

Structural characterization of bounded tree rank

m-batched splitter game of radius r :
Two players: Splitter and Localizer.

Structural characterization of bounded tree rank

m-batched splitter game of radius r :
Two players: Splitter and Localizer. In each round of the game:

Structural characterization of bounded tree rank

m-batched splitter game of radius r :
Two players: Splitter and Localizer. In each round of the game:

- Localizer picks $v \in V(G)$ and restricts to $G^{\prime}:=B_{G}^{r}(v)$.

Structural characterization of bounded tree rank

m-batched splitter game of radius r :
Two players: Splitter and Localizer. In each round of the game:

- Localizer picks $v \in V(G)$ and restricts to $G^{\prime}:=B_{G}^{r}(v)$.

Structural characterization of bounded tree rank

m-batched splitter game of radius r :
Two players: Splitter and Localizer. In each round of the game:

- Localizer picks $v \in V(G)$ and restricts to $G^{\prime}:=B_{G}^{r}(v)$.

Structural characterization of bounded tree rank

m-batched splitter game of radius r :
Two players: Splitter and Localizer. In each round of the game:

- Localizer picks $v \in V(G)$ and restricts to $G^{\prime}:=B_{G}^{r}(v)$.
- Splitter deletes at most m vertices from G^{\prime} and the game continues on the obtained graph.

Structural characterization of bounded tree rank

m-batched splitter game of radius r :
Two players: Splitter and Localizer. In each round of the game:

- Localizer picks $v \in V(G)$ and restricts to $G^{\prime}:=B_{G}^{r}(v)$.
- Splitter deletes at most m vertices from G^{\prime} and the game continues on the obtained graph.

Structural characterization of bounded tree rank

m-batched splitter game of radius r :
Two players: Splitter and Localizer. In each round of the game:

- Localizer picks $v \in V(G)$ and restricts to $G^{\prime}:=B_{G}^{r}(v)$.
- Splitter deletes at most m vertices from G^{\prime} and the game continues on the obtained graph.

Structural characterization of bounded tree rank

m-batched splitter game of radius r :
Two players: Splitter and Localizer. In each round of the game:

- Localizer picks $v \in V(G)$ and restricts to $G^{\prime}:=B_{G}^{r}(v)$.
- Splitter deletes at most m vertices from G^{\prime} and the game continues on the obtained graph.
- If no vertices remain, Splitter wins the game.

Structural characterization of bounded tree rank

m-batched splitter game of radius r :
Two players: Splitter and Localizer. In each round of the game:

- Localizer picks $v \in V(G)$ and restricts to $G^{\prime}:=B_{G}^{r}(v)$.
- Splitter deletes at most m vertices from G^{\prime} and the game continues on the obtained graph.
- If no vertices remain, Splitter wins the game.

Lemma

Let $d \in \mathbb{N}$. The following conditions are equivalent:
(1) \mathcal{C} has (elementary) tree rank d,

Structural characterization of bounded tree rank

m-batched splitter game of radius r :
Two players: Splitter and Localizer. In each round of the game:

- Localizer picks $v \in V(G)$ and restricts to $G^{\prime}:=B_{G}^{r}(v)$.
- Splitter deletes at most m vertices from G^{\prime} and the game continues on the obtained graph.
- If no vertices remain, Splitter wins the game.

Lemma

Let $d \in \mathbb{N}$. The following conditions are equivalent:
(1) \mathcal{C} has (elementary) tree rank d,
(2) There is an (elementary) function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $r \in \mathbb{N}$ Splitter wins the $f(r)$-batched splitter game of radius r in at most d rounds, on every $G \in \mathcal{C}$.

How to do elementary FO model checking?

How to do elementary FO model checking?

Compute the "constant alternation rank"-type of the graph,
using FO model checking algorithm on bounded expansion classes [Dvořák, Král, \& Thomas, 2014] (which is elementarily-FPT for sentences of constant alternation rank).

How to do elementary FO model checking?

Compute the "constant alternation rank"-type of the graph,
using FO model checking algorithm on bounded expansion classes [Dvořák, Král, \& Thomas, 2014] (which is elementarily-FPT for sentences of constant alternation rank).

The collapse of the FO alternation hierarchy on bounded tree rank classes implies the following:
If two vertices have the same "constant alternation rank"-type, then they have the same q-type.

Conclusion

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]
If \mathcal{C} has bounded elementary tree rank, then FO model checking is elementarily-FPT on \mathcal{C}.

Corollary

If \mathcal{C} excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on \mathcal{C}.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]
Assume $\mathrm{AW}\left[{ }^{*}\right] \neq \mathrm{FPT}$. Let \mathcal{C} be a monotone graph class.
If FO model checking is elementarily-FPT on \mathcal{C}, then \mathcal{C} has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.

Conclusion

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]
If \mathcal{C} has bounded elementary tree rank, then FO model checking is elementarily-FPT on \mathcal{C}.

Corollary

If \mathcal{C} excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on \mathcal{C}.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]
Assume $\mathrm{AW}\left[{ }^{*}\right] \neq \mathrm{FPT}$. Let \mathcal{C} be a monotone graph class.
If FO model checking is elementarily-FPT on \mathcal{C}, then \mathcal{C} has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.
What about dense classes?

Merci!

Towards dense graph classes

Towards dense graph classes

Tree rank of \mathcal{C} :

the largest number $d \in \mathbb{N}$ such that there is an $r \in \mathbb{N}$ such that $\mathcal{T}_{d} \subseteq \operatorname{TopMinors}_{r}(\mathcal{C})$.

Towards dense graph classes

Tree rank of \mathcal{C} :

the largest number $d \in \mathbb{N}$ such that there is an $r \in \mathbb{N}$ such that $\mathcal{T}_{d} \subseteq \operatorname{TopMinors}_{r}(\mathcal{C})$.

Rank of \mathcal{C} :

the largest number $d \in \mathbb{N}$ such that \mathcal{C} transduces \mathcal{T}_{d}.

Towards dense graph classes

Tree rank of \mathcal{C} :

the largest number $d \in \mathbb{N}$ such that there is an $r \in \mathbb{N}$ such that $\mathcal{T}_{d} \subseteq \operatorname{TopMinors}_{r}(\mathcal{C})$.

Rank of \mathcal{C} :

the largest number $d \in \mathbb{N}$ such that \mathcal{C} transduces \mathcal{T}_{d}.

Conjecture:

A hereditary graph class \mathcal{C} has elementarily-FPT model checking if and only if it has bounded rank.

Towards dense graph classes

Tree rank of \mathcal{C} :

the largest number $d \in \mathbb{N}$ such that there is an $r \in \mathbb{N}$ such that $\mathcal{T}_{d} \subseteq \operatorname{TopMinors}_{r}(\mathcal{C})$.

Rank of \mathcal{C} :
the largest number $d \in \mathbb{N}$ such that \mathcal{C} transduces \mathcal{T}_{d}.

Conjecture:

A hereditary graph class \mathcal{C} has elementarily-FPT model checking if and only if it has bounded rank.

Conjecture:

Let \mathcal{C} be a hereditary graph class.
\mathcal{C} has bounded rank $\Longleftrightarrow \exists k \in \mathbb{N}$ such that every φ is equivalent on \mathcal{C} to a ψ of alternation rank k.

A graph class \mathcal{C} is weakly sparse if it avoids some biclique as a subgraph.

A graph class \mathcal{C} is weakly sparse if it avoids some biclique as a subgraph.
Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]
Let \mathcal{C} be a weakly sparse graph class. \mathcal{C} has bounded tree rank $\Longleftrightarrow \mathcal{C}$ has bounded rank.

A graph class \mathcal{C} is weakly sparse if it avoids some biclique as a subgraph.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]
Let \mathcal{C} be a weakly sparse graph class. \mathcal{C} has bounded tree rank $\Longleftrightarrow \mathcal{C}$ has bounded rank.

Conjecture:

A hereditary graph class \mathcal{C} has elementarily-FPT model checking if and only if it has bounded rank.

Conjecture:

Let \mathcal{C} be a hereditary graph class.
\mathcal{C} has bounded rank $\Longleftrightarrow \exists k \in \mathbb{N}$ such that every φ is equivalent on \mathcal{C} to a ψ of alternation rank k.

