Exact Algorithms and Lowerbounds for Multiagent Pathfinding

Foivos Fioravantes ${ }^{1}$ Dušan Knop ${ }^{1}$ Jan Matyáš Křišťan ${ }^{1}$
Nikolaos Melissinos ${ }^{1}$ Michal Opler ${ }^{1}$
${ }^{1}$ Department of Theoretical Computer Science, FIT, Czech Technical University in Prague, Czechia

JGA 2023

Multiagent Pathfinding

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions:
swap or not

Question:

What is the makespan
$=$ minimum number of
rounds?

Multiagent Pathfinding

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions:
swap or not

Question:

What is the makespan
$=$ minimum number of rounds?
\rightarrow Here, at least 5 rounds
for the blue robot

Multiagent Pathfinding - Swaps allowed

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:
What is the makespan
$=$ minimum number of rounds?
\rightarrow Here, at least 5 rounds
for the blue robot

Multiagent Pathfinding - Swaps allowed

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:
What is the makespan
$=$ minimum number of rounds?
\rightarrow Here, at least 5 rounds
for the blue robot

Multiagent Pathfinding - Swaps allowed

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:
What is the makespan
$=$ minimum number of rounds?
\rightarrow Here, at least 5 rounds
for the blue robot

Multiagent Pathfinding - Swaps allowed

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:
What is the makespan
$=$ minimum number of
rounds?
\rightarrow Here, at least 5 rounds
for the blue robot

Multiagent Pathfinding - Swaps allowed

The problem:

Round 3

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:
What is the makespan
$=$ minimum number of rounds?
\rightarrow Here, at least 5 rounds
for the blue robot

Multiagent Pathfinding - Swaps allowed

The problem:

Makespan $=5$

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:

What is the makespan
$=$ minimum number of rounds?
\rightarrow Here, at least 5 rounds for the blue robot

Multiagent Pathfinding - Swaps allowed

The problem:

Makespan $=5$

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:
What is the makespan
$=$ minimum number of rounds?
\rightarrow Here, at least 5 rounds for the blue robot

Multiagent Pathfinding - Swaps not allowed

The problem:

Round 0

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:
What is the makespan
$=$ minimum number of rounds?
\rightarrow Here, at least 5 rounds
for the blue robot

Multiagent Pathfinding - Swaps not allowed

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:
What is the makespan
$=$ minimum number of
rounds?
\rightarrow Here, at least 5 rounds
for the blue robot

Multiagent Pathfinding - Swaps not allowed

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:
What is the makespan
$=$ minimum number of rounds?
\rightarrow Here, at least 5 rounds
for the blue robot

Multiagent Pathfinding - Swaps not allowed

The problem:

Round 3

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:
What is the makespan
$=$ minimum number of
rounds?
\rightarrow Here, at least 5 rounds
for the blue robot

Multiagent Pathfinding - Swaps not allowed

The problem:

Round 4

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:
What is the makespan
$=$ minimum number of
rounds?
\rightarrow Here, at least 5 rounds
for the blue robot

Multiagent Pathfinding - Swaps not allowed

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:
What is the makespan
$=$ minimum number of
rounds?
\rightarrow Here, at least 5 rounds
for the blue robot

Multiagent Pathfinding - Swaps not allowed

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:
What is the makespan
$=$ minimum number of
rounds?
\rightarrow Here, at least 5 rounds
for the blue robot

Multiagent Pathfinding - Swaps not allowed

The problem:

Makespan ≤ 7

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:
What is the makespan
$=$ minimum number of rounds?
\rightarrow Here, at least 5 rounds
for the blue robot

What is already known?

The problem is hard

- NP-complete (2010, Surynek),
- even on planar graphs (2019, $\mathrm{Yu})$

Heuristics (2019, Stern)

- A^{*}-based (1968, Hart, Nilsson, Raphael)
- SAT-based (2017, Surynek et al.)
- Scheduling (2018, Barták, Švancara, Vlk)

Theorem (2023, Eiben, Ganian, Kanj)

When allowing swaps, deciding if makespan ≤ 26 remains NP-complete even when G is planar and $\Delta(G)=4$.

Similar problems

- Same problem but sequential moves of the robots (1984, Kornhauser, Miller, Spirakis)
- One robot on each vertex: Token swapping (2022, Aichholzer et al.), (2018, Bonnet, Miltzow, Rzazewski)

What we did

Studied parameterised complexity of the problem:

What we did

Studied parameterised complexity of the problem:

Theorem

When (not resp.) allowing swaps, deciding if makespan ≤ 3 (≤ 2 resp.) remains NP-complete even when G is planar and $\Delta(G)=4(\Delta(G)=5)$.

Main tool for polynomial algorithms

Time-expanded graph

Time expanded graph with 3 layers: $G_{T}(3)$

Time-expanded graph

Time-expanded graph

Time-expanded graph

G

Time-expanded graph

Time expanded graph with 3 layers: $G_{T}(3)$

Time-expanded graph

Time expanded graph with 3 layers: $G_{T}(3)$

Ingredients:

1 Given G, starting and ending positions $s_{i}, t_{i}, 1 \leq i \leq k$, the makespan is ℓ iff there exist k VERTEX-DISJOINT PATHS from the s_{i} 's to the t_{i} 's in $G_{T}(\ell)$.

Time-expanded graph

Time expanded graph with 3 layers: $G_{T}(3)$

Ingredients:

1 Given G, starting and ending positions $s_{i}, t_{i}, 1 \leq i \leq k$, the makespan is ℓ iff there exist k VERTEX-DISJOINT PATHS from the s_{i} 's to the t_{i} 's in $G_{T}(\ell)$.
2 FPT algorithm for k VERTEX-DISJOINT PATHS parameterised by treewidth (1994, Scheffler).
3 FPT algorithm for k VERTEX-DISJOINT PATHS parameterised by $k+\ell$ (2011, Golovach and Thilikos).

Time-expanded graph

Time expanded graph with 3 layers: $G_{T}(3)$

Ingredients:

1 Given G, starting and ending positions $s_{i}, t_{i}, 1 \leq i \leq k$, the makespan is ℓ iff there exist k VERTEX-DISJOINT PATHS from the s_{i} 's to the t_{i} 's in $G_{T}(\ell)$.
2 FPT algorithm for k VERTEX-DISJOINT PATHS parameterised by treewidth (1994, Scheffler).
3 FPT algorithm for k VERTEX-DISJOINT PATHS parameterised by $k+\ell$ (2011, Golovach and Thilikos).

Careful: $G_{T}(\ell)$ has treewidth bounded by $t w(G)+\ell$.

NP-hardness for trees

Multiagent Pathfinding on Trees

Theorem

When not allowing swaps, it is NP-hard to compute the makespan of T, even when T is a tree with $\Delta(T)=5$.

Reduction from Token Swapping:

- same problem as ours, one robot on each vertex
- swaps allowed
- NP-hard for trees (2022, Aichholzer et al.)

Multiagent Pathfinding is hard on Trees

Main idea on graphs of treewidth 2:

Multiagent Pathfinding is hard on Trees

Main idea on graphs of treewidth 2:

Multiagent Pathfinding is hard on Trees

Main idea on graphs of treewidth 2:

Multiagent Pathfinding is hard on Trees

Main idea on graphs of treewidth 2:

Multiagent Pathfinding is hard on Trees

Main idea on graphs of treewidth 2:

Multiagent Pathfinding is hard on Trees

Main idea on graphs of treewidth 2:

Multiagent Pathfinding is hard on Trees

Main idea on graphs of treewidth 2:

Multiagent Pathfinding is hard on Trees

Main idea on graphs of treewidth 2:

Multiagent Pathfinding is hard on Trees

Main idea on graphs of treewidth 2:

Multiagent Pathfinding is hard on Trees

To go to trees:

- Replace rhombuses by complete binary trees of height $\lceil\log (\Delta)+1\rceil$
- Carefully adjust the lengths and agents of the extra paths

Conclusion

Conclusion

Conclusion

Merci!

