Exact Algorithms and Lowerbounds for Multiagent Pathfinding

<u>Foivos Fioravantes</u>¹ Dušan Knop¹ Jan Matyáš Křišťan¹ Nikolaos Melissinos¹ Michal Opler¹

¹Department of Theoretical Computer Science, FIT, Czech Technical University in Prague, Czechia

JGA 2023

Multiagent Pathfinding

Multiagent Pathfinding

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question: What is the **makespan** = minimum number of rounds?

Multiagent Pathfinding

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question: What is the **makespan** = minimum number of rounds?

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:

What is the **makespan** = minimum number of rounds?

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:

What is the **makespan** = minimum number of rounds?

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:

What is the **makespan** = minimum number of rounds?

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:

What is the **makespan** = minimum number of rounds?

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:

What is the **makespan** = minimum number of rounds?

Round 4

Makespan = 5

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:

What is the **makespan** = minimum number of rounds?

Makespan = 5

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:

What is the **makespan** = minimum number of rounds?

Round 0

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:

What is the **makespan** = minimum number of rounds?

Round 1

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:

What is the **makespan** = minimum number of rounds?

Round 2

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:

What is the **makespan** = minimum number of rounds?

Round 3

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:

What is the **makespan** = minimum number of rounds?

Round 4

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:

What is the **makespan** = minimum number of rounds?

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:

What is the **makespan** = minimum number of rounds?

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:

What is the **makespan** = minimum number of rounds?

$\mathrm{Makespan} \leq 7$

The problem:

- Each robot wants to reach its colour
- Move in parallel
- Centralised decisions
- Two versions: swap or not

Question:

What is the **makespan** = minimum number of rounds?

What is already known?

The problem is hard

- NP-complete (2010, Surynek),
- even on planar graphs (2019, Yu)

Heuristics (2019, Stern)

- A*-based (1968, Hart, Nilsson, Raphael)
- SAT-based (2017, Surynek et al.)
- Scheduling (2018, Barták, Švancara, Vlk)

Theorem (2023, Eiben, Ganian, Kanj)

When allowing swaps, deciding if makespan ≤ 26 remains NP-complete even when G is planar and $\Delta(G) = 4$.

Similar problems

- Same problem but **sequential** moves of the robots (1984, Kornhauser, Miller, Spirakis)
- One robot **on each vertex**: Token swapping (2022, Aichholzer et al.), (2018, Bonnet, Miltzow, Rzazewski)

What we did

Studied parameterised complexity of the problem:

What we did

Studied parameterised complexity of the problem:

Theorem

When (not resp.) allowing swaps, deciding if makespan $\leq 3 \ (\leq 2 \text{ resp.})$ remains NP-complete even when G is planar and $\Delta(G) = 4 \ (\Delta(G) = 5)$.

F. Fioravantes

Multiagent Pathfinding

Main tool for polynomial algorithms

Time expanded graph with 3 layers: $G_T(3)$

Ingredients:

I Given G, starting and ending positions $s_i, t_i, 1 \le i \le k$, the makespan is ℓ iff there exist k VERTEX-DISJOINT PATHS from the s_i 's to the t_i 's in $G_T(\ell)$.

Ingredients:

- Given G, starting and ending positions $s_i, t_i, 1 \le i \le k$, the makespan is ℓ iff there exist k VERTEX-DISJOINT PATHS from the s_i 's to the t_i 's in $G_T(\ell)$.
- **2** FPT algorithm for k VERTEX-DISJOINT PATHS parameterised by treewidth (1994, Scheffler).
- **3** FPT algorithm for k VERTEX-DISJOINT PATHS parameterised by $k + \ell$ (2011, Golovach and Thilikos).

Ingredients:

- Given G, starting and ending positions $s_i, t_i, 1 \le i \le k$, the makespan is ℓ iff there exist k VERTEX-DISJOINT PATHS from the s_i 's to the t_i 's in $G_T(\ell)$.
- **2** FPT algorithm for k VERTEX-DISJOINT PATHS parameterised by treewidth (1994, Scheffler).
- **3** FPT algorithm for k VERTEX-DISJOINT PATHS parameterised by $k + \ell$ (2011, Golovach and Thilikos).

Careful: $G_T(\ell)$ has treewidth bounded by $tw(G) + \ell$.

NP-hardness for trees

Theorem

When **not** allowing swaps, it is NP-hard to compute the makespan of T, even when T is a tree with $\Delta(T) = 5$.

Reduction from TOKEN SWAPPING:

- same problem as ours, one robot on each vertex
- swaps allowed
- NP-hard for trees (2022, Aichholzer et al.)

To go to trees:

- Replace rhombuses by complete binary trees of height
 - $\lceil \log(\Delta) + 1 \rceil$
- Carefully adjust the lengths and agents of the extra paths

Conclusion

Conclusion

Conclusion

Multiagent Pathfinding

11/11