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Treewidth

A tree decomposition of a graph G = (V ,E )
is a tree T with nodes (bags) X1, . . . ,Xn,
where each Xi is a subset of V , satisfying

1 X1 ∪ X2 ∪ · · · ∪ Xn = V ;

2 for all v ∈ V , the bags containing v
form a connected subtree of T ;

3 for all uv ∈ E , there exists a bag
containing both u and v .

The width of a tree decomposition is the
size of the largest bag minus one.

Treewidth

The treewidth tw(G ) of G is the minimum
width over all tree decompositions of G .
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Treewidth: the King of Structural Parameters

Fixed parameter tractable (FPT)

Given a problem Π with input I and a parameter k , Π is FPT parameterized
by k if it can be solved in time f (k) · |I|O(1), where f is a computable function.

Many NP-hard problems are FPT parameterized by treewidth via dynamic
programming on the tree decomposition.

In particular, graph problems expressible in Monadic Second-Order (MSO)
logic are FPT parameterized by the treewidth plus the length of the MSO
formula [Courcelle, 1990].

However, f (tw) may be a tower of exponentials!

treewidth

pathwidthfeedback vertex set

treedepth

vertex cover

distance to disjoint paths
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Conditional lower bounds on f (tw) in the FPT algorithms

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, n-variable 3-SAT cannot be solved in time 2o(n).

Conditional lower bounds for f (tw) are usually of the form 2o(tw), or even
2o(tw log tw) or 2o(poly(tw)).

Rarer results: Unless the ETH fails,

• QSAT (PSPACE-complete) with k alternations admits a lower bound of
a tower of exponents of height k in the treewidth of the primal graph
[Fichte, Hecher, Pfandler, 2020];

• k-Choosability (Πp
2-complete) and k-Choosability Deletion

(Σp
3-complete) admit double- and triple-exponential lower bounds in tw,

resp. [Marx, Mitsou, 2016];

• ∃∀-CSP (Σp
2-complete) admits a double-exponential lower bound in the

vertex cover number [Lampis, Mitsou, 2017].

Common theme: problems are hard for complexity classes higher than NP.
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Our results (Part I)

We prove the first (conditional) double-exponential lower bounds in the
treewidth and vertex cover number for NP-complete problems!

We develop a technique and use it to prove such lower bounds for 3
NP-complete problems:

Theorem [Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2023]

Unless the ETH fails, Metric Dimension and Geodetic Set do not
admit algorithms running in time 2f (diam)

o(tw) · nO(1), for any computable
function f .

Theorem [Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2023]

Unless the ETH fails, Strong Metric Dimension does not admit an
algorithm running in time 22

o(vc) · nO(1).

We also give matching upper bounds (algorithms) for our lower bounds.
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Metric dimension

Metric dimension of a graph G = (V ,E ) [Slater ’75, Harary, Melter ’76]

S ⊆ V is a resolving set of G if ∀u, v ∈ V , ∃z ∈ S with d(z , u) ̸= d(z , v).
The minimum size of a resolving set of G is the metric dimension of G .
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Vertices 4 and 6 are not resolved by 5 nor 8.

Metric Dimension

Input: an undirected graph G = (V ,E ) and an integer k ≥ 1
Question: Is MD(G ) ≤ k?

Polynomial-time

Trees [Slater ‘75]

Cographs [Epstein et al ‘15]

Outerplanar [Diaz et al ‘17] 

NP-complete

Arbitrary [Garey, Johnson ‘79]
Split [Epstein et al ‘15]

Bipartite [Epstein et al ‘15]

Co-bipartite [Epstein et al ‘15]

Planar [Diaz et al ‘17]

Interval [Foucaud et al ‘17]
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Parameterized complexity of Metric Dimension

Vertex Cover
Max Leaf
Number

Feedback
Edge Set

Distance
to Clique

Minimum
Clique Cover

Distance to
Co-Cluster

Distance
to Cluster

Distance to
Disjoint Paths

Treedepth Bandwidth

Maximum
Independent
Set

Distance to
Cograph

Distance
to Interval

Feedback
Vertex Set

Pathwidth
Maximum
Degree

Distance
to Perfect

Treewidth

FPT (f (k) · nO(1)-time algorithm)

XP (nf (k)-time algorithm)

W[1]-hard (not FPT unless FPT=W[1])

para-NP-hard (not XP unless P=NP)

n: size of input

k : size of parameter

NP-hard in graphs of diameter 2 [Foucaud, Mertzios, Naserasr, Parreau, Valicov ’17].

NP-hard in graphs of pathwidth 24 [Li, Pilipczuk ’22].
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First tool: bit-representation gadget

bit-rep(X)

bits(X)

nullifier(X)

X

xi

y*

according to bin(i)

H

G'

N(X)

Purple edges represent all possible edges.

Key: bit-rep(X ) has size O(log |X |) and distinguishes each vertex in X

from every other vertex in G .
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Part I of our technique: reduction from 3-Partitioned-3-SAT

3-Partitioned-3-SAT [Lampis, Melissinos, Vasilakis, 2023]

Input: a 3-CNF formula ϕ with a partition of its variables into 3 disjoint

sets Xα, Xβ , and X γ such that |Xα| = |Xβ | = |X γ | = n and each clause
contains at most one variable from each of Xα, Xβ , and X γ .

Question: Is ϕ satisfiable?

Theorem [Lampis, Melissinos, Vasilakis, 2023]

Unless the ETH fails, 3-Partitioned-3-SAT does not admit an
algorithm running in time 2o(n).
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Part II of our technique: encode SAT with small separator

Xα := {xα1 , . . . , xαn }, tα2i represents xαi , and f α2i−1 represents xαi .

tα2

fα
1

c1 (xα
1 ∨ xβ

3 ∨ xγ
4)

tβ6

fβ
5

tγ8

fγ
7

c2 (xα
1 ∨ xγ

4)

c3 (xβ
3 ∨ xγ

4)

Aα

Aβ

Aγ
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Part II of our technique: set-representation gadget

Let Fp be the collection of subsets of {1, . . . , 2p} that contain exactly p integers.
No set in Fp is contained in another set in Fp (Sperner family).

There exists p = O(log n) s.t.
(2p
p

)
≥ 2n. We define a 1-to-1 function set-rep : {1, . . . , 2n} → Fp .

tα2

fα
1

c1 (xα
1 ∨ xβ

3 ∨ xγ
4)

tβ6

fβ
5

tγ8

fγ
7

c2 (xα
1 ∨ xγ

4)

c3 (xβ
3 ∨ xγ

4)

Aα

Aβ

Aγ

size 2p = O(log n)

size 2p

size 2p

set-rep

set-rep

set-rep

tα2 is the only vertex in Aα that does not

share a common neighbour with c1.

V α

V β

V γ

Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale Tight (Double) Exponential Bounds for NP-Complete Problems

11
/
14



12/14

Lower bound for Metric Dimension parameterized by tw

Theorem [Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2023]

Unless the ETH fails, Metric Dimension does not admit an algorithm

running in time 2f (diam)
o(tw) · nO(1), for any computable function f .

Vα

t2i
α

f2i-1
α

Aα

xi
α,°

xi
α,*

Xα
C

cq°

cq*

nullifier(Xα) nullifier(Aα) nullifier(Vα) nullifier(С)

bit-rep(С)bit-rep(Vα)bit-rep(Aα)bit-rep(Xα)

Purple edges represent all possible edges.

Blue edges represent set-rep and red edges are complementary to blue ones.

Budget of 3n vertices excluding bit-rep gadgets.
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Our results (Part II)

Theorem [Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2023]

Unless the ETH fails, Metric Dimension and Geodetic Set do not
admit algorithms running in time 2o(vc

2).

Theorem [Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2023]

Unless the ETH fails, Metric Dimension, Geodetic Set, and
Strong Metric Dimension do not admit kernelization algorithms
outputting kernels with 2o(vc) vertices.

We also give matching upper bounds (algorithms and kernels) for our
lower bounds.

As far as we know, such kernelization lower bounds were only known for

Edge Clique Cover [Cygan, Pilipczuk, Pilipczuk, 2016] and Biclique

Cover [Chandran, Issac, Karrenbauer, 2016].
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Further work

Theorem [Chalopin, Chepoi, Mc Inerney, Ratel, 2023]

Unless the ETH fails, Positive Non-Clashing Teaching Dimension
for Balls in Graphs does not admit a 22

o(vc) · nO(1)-time algorithm, nor a
kernelization algorithm outputting a kernel with 2o(vc) vertices.

Question: For which classic problems in NP are the best known FPT
algorithms parameterized by tw or vc double-exponential?

Question: For which classic problems do the best known kernelization
algorithms output a kernel with 2O(vc) vertices?

Thanks!
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