Tight (Double) Exponential Bounds for NP-Complete Problems: Treewidth and Vertex Cover Parameterizations

Florent Foucaud, Esther Galby, Liana Khazaliya, Shaohua Li, Fionn Mc Inerney, Roohani Sharma, and Prafullkumar Tale

Lyon, France, JGA 2023

November 24, 2023
Treewidth

A tree decomposition of a graph \(G = (V, E) \) is a tree \(T \) with nodes (bags) \(X_1, \ldots, X_n \), where each \(X_i \) is a subset of \(V \), satisfying:

1. \(X_1 \cup X_2 \cup \cdots \cup X_n = V \);
2. For all \(v \in V \), the bags containing \(v \) form a **connected** subtree of \(T \);
3. For all \(uv \in E \), there exists a bag containing both \(u \) and \(v \).

The width of a tree decomposition is the size of the largest bag minus one.

The treewidth \(tw(G) \) of \(G \) is the minimum width over all tree decompositions of \(G \).
Treewidth

A tree decomposition of a graph \(G = (V, E) \) is a tree \(T \) with nodes (bags) \(X_1, \ldots, X_n \), where each \(X_i \) is a subset of \(V \), satisfying

1. \(X_1 \cup X_2 \cup \cdots \cup X_n = V \);
2. For all \(v \in V \), the bags containing \(v \) form a connected subtree of \(T \);
3. For all \(uv \in E \), there exists a bag containing both \(u \) and \(v \).

The width of a tree decomposition is the size of the largest bag minus one.

The treewidth \(tw(G) \) of \(G \) is the minimum width over all tree decompositions of \(G \).
Fixed parameter tractable (FPT)

Given a problem Π with input I and a parameter k, Π is FPT parameterized by k if it can be solved in time $f(k) \cdot |I|^{O(1)}$, where f is a computable function.
Fixed parameter tractable (FPT)

Given a problem \(\Pi \) with input \(I \) and a parameter \(k \), \(\Pi \) is FPT parameterized by \(k \) if it can be solved in time \(f(k) \cdot |I|^{O(1)} \), where \(f \) is a computable function.

Many NP-hard problems are FPT parameterized by treewidth via dynamic programming on the tree decomposition.

In particular, graph problems expressible in Monadic Second-Order (MSO) logic are FPT parameterized by the treewidth plus the length of the MSO formula [Courcelle, 1990].
Treewidth: the **King** of Structural Parameters

Fixed parameter tractable (FPT)

Given a problem Π with input \mathcal{I} and a parameter k, Π is FPT parameterized by k if it can be solved in time $f(k) \cdot |\mathcal{I}|^{O(1)}$, where f is a computable function.

Many **NP-hard** problems are FPT parameterized by treewidth via dynamic programming on the tree decomposition.

In particular, graph problems expressible in Monadic Second-Order (MSO) logic are FPT parameterized by the treewidth plus the length of the MSO formula [Courcelle, 1990]. However, $f(tw)$ may be a tower of exponentials!
Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, n-variable 3-SAT cannot be solved in time $2^{o(n)}$.

Common theme: problems are hard for complexity classes higher than NP.
Conditional lower bounds on \(f(tw) \) in the FPT algorithms

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, \(n \)-variable 3-SAT cannot be solved in time \(2^{o(n)} \).

Conditional lower bounds for \(f(tw) \) are usually of the form \(2^{o(tw)} \), or even \(2^{o(tw \log tw)} \) or \(2^{o(poly(tw))} \).

Rarer results: Unless the ETH fails,

- QSAT (PSPACE-complete) with \(k \) alternations admits a lower bound of a tower of exponents of height \(k \) in the treewidth of the primal graph [Fichte, Hecher, Pfandler, 2020];

- \(k \)-Choosability (\(\Pi_2^p \)-complete) and \(k \)-Choosability Deletion (\(\Sigma_3^p \)-complete) admit double- and triple-exponential lower bounds in \(tw \), resp. [Marx, Mitsou, 2016];

- \(\exists \forall \)-CSP (\(\Sigma_2^p \)-complete) admits a double-exponential lower bound in the vertex cover number [Lampis, Mitsou, 2017].
Conditional lower bounds on $f(tw)$ in the FPT algorithms

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, n-variable 3-SAT cannot be solved in time $2^{o(n)}$.

Conditional lower bounds for $f(tw)$ are usually of the form $2^{o(tw)}$, or even $2^{o(tw \log tw)}$ or $2^{o(poly(tw))}$.

Rarer results: Unless the ETH fails,

- QSAT (PSPACE-complete) with k alternations admits a lower bound of a tower of exponents of height k in the treewidth of the primal graph [Fichte, Hecher, Pfandler, 2020];

- k-Choosability (Π^p_2-complete) and k-Choosability Deletion (Σ^p_3-complete) admit double- and triple-exponential lower bounds in tw, resp. [Marx, Mitsou, 2016];

- $\exists\forall$-CSP (Σ^p_2-complete) admits a double-exponential lower bound in the vertex cover number [Lampis, Mitsou, 2017].

Common theme: problems are hard for complexity classes higher than NP.
Our results (Part I)

We prove the first (conditional) double-exponential lower bounds in the treewidth and vertex cover number for NP-complete problems!
Our results (Part I)

We prove the **first** (conditional) **double-exponential** lower bounds in the **treewidth** and **vertex cover number** for **NP-complete** problems!

We develop a **technique** and use it to prove such lower bounds for 3 **NP-complete** problems:

Theorem [Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2023]

Unless the ETH fails, **Metric Dimension** and **Geodetic Set** do not admit algorithms running in time $2^{f(\text{diam})^{o(\text{tw})}} \cdot n^{O(1)}$, for any computable function f.

Theorem [Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2023]

Unless the ETH fails, **Strong Metric Dimension** does not admit an algorithm running in time $2^{2^{o(\text{vc})}} \cdot n^{O(1)}$.

We also give **matching upper bounds** (algorithms) for our lower bounds.
Our results (Part I)

We prove the first (conditional) double-exponential lower bounds in the treewidth and vertex cover number for NP-complete problems!

We develop a technique and use it to prove such lower bounds for 3 NP-complete problems:

Theorem [Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2023]

Unless the ETH fails, **Metric Dimension** and **Geodetic Set** do not admit algorithms running in time $2^{f(\text{diam})^{o(tw)}} \cdot n^{O(1)}$, for any computable function f.

Theorem [Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2023]

Unless the ETH fails, **Strong Metric Dimension** does not admit an algorithm running in time $2^{o(\text{vc})} \cdot n^{O(1)}$.

We also give matching upper bounds (algorithms) for our lower bounds.
Metric dimension of a graph \(G = (V, E) \) \([\text{Slater '75, Harary, Melter '76}]\)

\(S \subseteq V \) is a \textbf{resolving set} of \(G \) if \(\forall u, v \in V, \exists z \in S \) with \(d(z, u) \neq d(z, v) \).

The \textbf{minimum size} of a resolving set of \(G \) is the \textbf{metric dimension} of \(G \).

Vertices 4 and 6 are not resolved by 5 nor 8.
Metric dimension of a graph $G = (V, E)$ [Slater '75, Harary, Melter '76]

$S \subseteq V$ is a resolving set of G if $\forall u, v \in V, \exists z \in S$ with $d(z, u) \neq d(z, v)$.
The minimum size of a resolving set of G is the metric dimension of G.

Vertices 4 and 6 are not resolved by 5 nor 8.
Metric dimension of a graph $G = (V, E)$ [Slater '75, Harary, Melter '76]

$S \subseteq V$ is a resolving set of G if $\forall u, v \in V, \exists z \in S$ with $d(z, u) \neq d(z, v)$.

The minimum size of a resolving set of G is the metric dimension of G.

Vertices 4 and 6 are not resolved by 5 nor 8.
Metric dimension of a graph $G = (V, E)$ [Slater '75, Harary, Melter '76]

$S \subseteq V$ is a resolving set of G if $\forall u, v \in V$, $\exists z \in S$ with $d(z, u) \neq d(z, v)$. The minimum size of a resolving set of G is the metric dimension of G.

![Diagram of a graph with metric dimensions indicated on the vertices]
Metric dimension of a graph $G = (V, E)$ [Slater '75, Harary, Melter '76]

$S \subseteq V$ is a **resolving set** of G if $\forall u, v \in V$, $\exists z \in S$ with $d(z, u) \neq d(z, v)$. The **minimum size** of a resolving set of G is the **metric dimension** of G.

Metric Dimension

Input: an undirected graph $G = (V, E)$ and an integer $k \geq 1$

Question: Is $MD(G) \leq k$?
Metric dimension

Metric dimension of a graph $G = (V, E)$ [Slater '75, Harary, Melter '76]

$S \subseteq V$ is a resolving set of G if $\forall u, v \in V, \exists z \in S$ with $d(z, u) \neq d(z, v)$. The minimum size of a resolving set of G is the metric dimension of G.

Polynomial-time
- Trees [Slater '75]
- Cographs [Epstein et al '15]
- Outerplanar [Diaz et al '17]

NP-complete
- Arbitrary [Garey, Johnson '79]
- Split [Epstein et al '15]
- Bipartite [Epstein et al '15]
- Co-bipartite [Epstein et al '15]
- Planar [Diaz et al '17]
- Interval [Foucaud et al '17]
Parameterized complexity of **Metric Dimension**

- FPT \((f(k) \cdot n^{O(1)})\)-time algorithm
- XP \((n^{f(k)})\)-time algorithm
- W[1]-hard (not FPT unless FPT=W[1])
- para-NP-hard (not XP unless P=NP)

\(n\): size of input
\(k\): size of parameter

NP-hard in graphs of diameter 2 [Foucaud, Mertzios, Naserasr, Parreau, Valicov '17].

NP-hard in graphs of pathwidth 24 [Li, Pilipczuk '22].
First tool: bit-representation gadget

Purple edges represent all possible edges.

Key: bit-rep(X) has size $O(\log |X|)$ and distinguishes each vertex in X from every other vertex in G.
3-PARTITIONED-3-SAT [Lampis, Melissinos, Vasilakis, 2023]

Input: a 3-CNF formula ϕ with a partition of its variables into 3 disjoint sets X^α, X^β, and X^γ such that $|X^\alpha| = |X^\beta| = |X^\gamma| = n$ and each clause contains at most one variable from each of X^α, X^β, and X^γ.

Question: Is ϕ satisfiable?
Part I of our technique: reduction from 3-PARTITIONED-3-SAT

3-PARTITIONED-3-SAT [Lampis, Melissinos, Vasilakis, 2023]

Input: a 3-CNF formula ϕ with a partition of its variables into 3 disjoint sets X^α, X^β, and X^γ such that $|X^\alpha| = |X^\beta| = |X^\gamma| = n$ and each clause contains at most one variable from each of X^α, X^β, and X^γ.

Question: Is ϕ satisfiable?

Theorem [Lampis, Melissinos, Vasilakis, 2023]

Unless the ETH fails, 3-PARTITIONED-3-SAT does not admit an algorithm running in time $2^{o(n)}$.
Part II of our technique: encode SAT with small separator

\[X^\alpha := \{ x_1^\alpha, \ldots, x_n^\alpha \}, \ t_{2i}^\alpha \text{ represents } x_i^\alpha, \text{ and } f_{2i-1}^\alpha \text{ represents } \overline{x_i}^\alpha. \]
Part II of our technique: set-representation gadget

Let F_p be the collection of subsets of $\{1, \ldots, 2p\}$ that contain exactly p integers. No set in F_p is contained in another set in F_p (Sperner family).

There exists $p = O(\log n)$ s.t. $\binom{2p}{p} \geq 2n$. We define a 1-to-1 function $\text{set-rep} : \{1, \ldots, 2n\} \rightarrow F_p$.

t_2^α is the only vertex in A^α that does not share a common neighbour with c_1.

$c_1 \quad (x_1^\alpha \lor x_3^\beta \lor \overline{x}_4^\gamma)$

$c_2 \quad (\overline{x}_1^\alpha \lor x_4^\gamma)$

$c_3 \quad (\overline{x}_3^\beta \lor \overline{x}_4^\gamma)$
Lower bound for **Metric Dimension** parameterized by t_w

Theorem [Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2023]

Unless the ETH fails, **Metric Dimension** does not admit an algorithm running in time $2^{f(diam)^{o(t_w)}} \cdot n^{O(1)}$, for any computable function f.

Purple edges represent all possible edges.
Blue edges represent set-rep and red edges are complementary to blue ones.
Budget of $3n$ vertices excluding bit-rep gadgets.
Our results (Part II)

Theorem [Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2023]

Unless the ETH fails, **Metric Dimension** and **Geodetic Set** do not admit algorithms running in time $2^{o(vc^2)}$.

Theorem [Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2023]

Unless the ETH fails, **Metric Dimension**, **Geodetic Set**, and **Strong Metric Dimension** do not admit kernelization algorithms outputting kernels with $2^{o(vc)}$ vertices.

We also give matching upper bounds (algorithms and kernels) for our lower bounds.

As far as we know, such kernelization lower bounds were only known for **Edge Clique Cover** [Cygan, Pilipczuk, Pilipczuk, 2016] and **Biclique Cover** [Chandran, Issac, Karrenbauer, 2016].
Theorem [Chalopin, Chepoi, Mc Inerney, Ratel, 2023]

Unless the ETH fails, **Positive Non-Clashing Teaching Dimension for Balls in Graphs** does not admit a $2^{o(vc)} \cdot n^{O(1)}$-time algorithm, nor a kernelization algorithm outputting a kernel with $2^{o(vc)}$ vertices.
Further work

Theorem [Chalopin, Chepoi, Mc Inerney, Ratel, 2023]

Unless the ETH fails, **Positive Non-Clashing Teaching Dimension for Balls in Graphs** does not admit a $2^{o(vc)} \cdot n^{O(1)}$-time algorithm, nor a kernelization algorithm outputting a kernel with $2^{o(vc)}$ vertices.

Question: For which **classic problems** in NP are the best known **FPT algorithms** parameterized by tw or vc **double-exponential**?

Question: For which **classic problems** do the best known **kernelization algorithms** output a kernel with $2^{O(vc)}$ vertices?
Further work

Theorem [Chalopin, Chepoi, Mc Inerney, Ratel, 2023]

Unless the ETH fails, **Positive Non-Clashing Teaching Dimension for Balls in Graphs** does not admit a $2^{o(vc)} \cdot n^{O(1)}$-time algorithm, nor a kernelization algorithm outputting a kernel with $2^{o(vc)}$ vertices.

Question: For which **classic problems** in NP are the best known **FPT algorithms** parameterized by tw or vc **double-exponential**?

Question: For which **classic problems** do the best known **kernelization algorithms** output a kernel with $2^{O(vc)}$ vertices?

Thanks!