Tight (Double) Exponential Bounds for NP-Complete Problems: Treewidth and Vertex Cover Parameterizations

Florent Foucaud, Esther Galby, Liana Khazaliya, Shaohua Li, **Fionn Mc Inerney**, Roohani Sharma, and Prafullkumar Tale

Lyon, France, JGA 2023

November 24, 2023

Treewidth

A tree decomposition of a graph G = (V, E)is a tree T with nodes (bags) X_1, \ldots, X_n , where each X_i is a subset of V, satisfying

- If or all v ∈ V, the bags containing v form a connected subtree of T;
- for all $uv \in E$, there exists a bag containing both u and v.

EH

Treewidth

A tree decomposition of a graph G = (V, E)is a tree T with nodes (bags) X_1, \ldots, X_n , where each X_i is a subset of V, satisfying

$$1 X_1 \cup X_2 \cup \cdots \cup X_n = V;$$

- ② for all v ∈ V, the bags containing v form a connected subtree of T;
- If or all uv ∈ E, there exists a bag containing both u and v.

The width of a tree decomposition is the size of the **largest** bag minus one.

Treewidth

The treewidth tw(G) of G is the **minimum** width over all tree decompositions of G.

Fixed parameter tractable (FPT)

Given a problem Π with input \mathcal{I} and a parameter k, Π is FPT parameterized by k if it can be solved in time $f(k) \cdot |\mathcal{I}|^{O(1)}$, where f is a computable function.

Fixed parameter tractable (FPT)

Given a problem Π with input \mathcal{I} and a parameter k, Π is FPT parameterized by k if it can be solved in time $f(k) \cdot |\mathcal{I}|^{O(1)}$, where f is a computable function.

Many NP-hard problems are FPT parameterized by treewidth via dynamic programming on the tree decomposition.

In particular, graph problems expressible in Monadic Second-Order (MSO) logic are FPT parameterized by the treewidth plus the length of the MSO formula [Courcelle, 1990].

Fixed parameter tractable (FPT)

Given a problem Π with input \mathcal{I} and a parameter k, Π is FPT parameterized by k if it can be solved in time $f(k) \cdot |\mathcal{I}|^{O(1)}$, where f is a computable function.

Many NP-hard problems are FPT parameterized by treewidth via dynamic programming on the tree decomposition.

In particular, graph problems expressible in Monadic Second-Order (MSO) logic are FPT parameterized by the treewidth plus the length of the MSO formula [Courcelle, 1990]. However, f(tw) may be a tower of exponentials!

Conditional lower bounds on f(tw) in the FPT algorithms

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, *n*-variable 3-SAT cannot be solved in time $2^{o(n)}$.

Conditional lower bounds on f(tw) in the FPT algorithms

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, *n*-variable 3-SAT cannot be solved in time $2^{o(n)}$.

Conditional lower bounds for f(tw) are usually of the form $2^{o(tw)}$, or even $2^{o(tw \log tw)}$ or $2^{o(poly(tw))}$.

Rarer results: Unless the ETH fails,

• QSAT (PSPACE-complete) with k alternations admits a lower bound of a tower of exponents of height k in the treewidth of the primal graph [Fichte, Hecher, Pfandler, 2020];

• *k*-CHOOSABILITY (Π_2^p -complete) and *k*-CHOOSABILITY DELETION (Σ_3^p -complete) admit double- and triple-exponential lower bounds in tw, resp. [Marx, Mitsou, 2016];

• $\exists \forall$ -CSP (Σ_2^{p} -complete) admits a double-exponential lower bound in the vertex cover number [Lampis, Mitsou, 2017].

Conditional lower bounds on f(tw) in the FPT algorithms

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, *n*-variable 3-SAT cannot be solved in time $2^{o(n)}$.

Conditional lower bounds for f(tw) are usually of the form $2^{o(tw)}$, or even $2^{o(tw \log tw)}$ or $2^{o(poly(tw))}$.

Rarer results: Unless the ETH fails,

• QSAT (PSPACE-complete) with k alternations admits a lower bound of a tower of exponents of height k in the treewidth of the primal graph [Fichte, Hecher, Pfandler, 2020];

• *k*-CHOOSABILITY (Π_2^p -complete) and *k*-CHOOSABILITY DELETION (Σ_3^p -complete) admit double- and triple-exponential lower bounds in tw, resp. [Marx, Mitsou, 2016];

• $\exists \forall$ -CSP (Σ_2^{p} -complete) admits a double-exponential lower bound in the vertex cover number [Lampis, Mitsou, 2017].

<u>Common theme</u>: problems are hard for complexity classes higher than NP. ^{4/14}

Our results (Part I)

We prove the **first** (conditional) double-exponential lower bounds in the treewidth and vertex cover number for NP-complete problems!

Our results (Part I)

We prove the **first** (conditional) double-exponential lower bounds in the treewidth and vertex cover number for NP-complete problems!

We develop a **technique** and use it to prove such lower bounds for 3 NP-complete problems:

Theorem [Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2023]

Unless the ETH fails, METRIC DIMENSION and GEODETIC SET do not admit algorithms running in time $2^{f(\operatorname{diam})^{o(tw)}} \cdot n^{O(1)}$, for any computable function f.

Theorem [Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2023]

Unless the ETH fails, STRONG METRIC DIMENSION does not admit an algorithm running in time $2^{2^{o(vc)}} \cdot n^{O(1)}$.

We also give matching upper bounds (algorithms) for our lower bounds. 5/14

Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale

Tight (Double) Exponential Bounds for NP-Complete Problems

Our results (Part I)

We prove the **first** (conditional) double-exponential lower bounds in the treewidth and vertex cover number for NP-complete problems!

We develop a **technique** and use it to prove such lower bounds for 3 NP-complete problems:

Theorem [Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2023]

Unless the ETH fails, METRIC DIMENSION and GEODETIC SET do not admit algorithms running in time $2^{f(\operatorname{diam})^{o(tw)}} \cdot n^{O(1)}$, for any computable function f.

Theorem [Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2023]

Unless the ETH fails, STRONG METRIC DIMENSION does not admit an algorithm running in time $2^{2^{o(vc)}} \cdot n^{O(1)}$.

We also give matching upper bounds (algorithms) for our lower bounds. 5/14

Metric dimension of a graph G = (V, E) [Slater '75, Harary, Melter '76]

 $S \subseteq V$ is a resolving set of G if $\forall u, v \in V$, $\exists z \in S$ with $d(z, u) \neq d(z, v)$. The **minimum size** of a resolving set of G is the metric dimension of G.

Metric dimension of a graph G = (V, E) [Slater '75, Harary, Melter '76]

 $S \subseteq V$ is a resolving set of G if $\forall u, v \in V$, $\exists z \in S$ with $d(z, u) \neq d(z, v)$. The **minimum size** of a resolving set of G is the metric dimension of G.

Metric dimension of a graph G = (V, E) [Slater '75, Harary, Melter '76]

 $S \subseteq V$ is a resolving set of G if $\forall u, v \in V$, $\exists z \in S$ with $d(z, u) \neq d(z, v)$. The **minimum size** of a resolving set of G is the metric dimension of G.

Vertices 4 and 6 are **not** resolved by 5 nor 8.

Metric dimension of a graph G = (V, E) [Slater '75, Harary, Melter '76]

 $S \subseteq V$ is a resolving set of G if $\forall u, v \in V$, $\exists z \in S$ with $d(z, u) \neq d(z, v)$. The **minimum size** of a resolving set of G is the metric dimension of G.

Metric dimension of a graph G = (V, E) [Slater '75, Harary, Melter '76]

 $S \subseteq V$ is a resolving set of G if $\forall u, v \in V$, $\exists z \in S$ with $d(z, u) \neq d(z, v)$. The **minimum size** of a resolving set of G is the metric dimension of G.

METRIC DIMENSION

Input: an undirected graph G = (V, E) and an integer $k \ge 1$ **Question:** Is $MD(G) \le k$?

Metric dimension of a graph G = (V, E) [Slater '75, Harary, Melter '76]

 $S \subseteq V$ is a resolving set of G if $\forall u, v \in V$, $\exists z \in S$ with $d(z, u) \neq d(z, v)$. The **minimum size** of a resolving set of G is the metric dimension of G.

Polynomial-time

Trees	[Slater '75]
Cographs	[Epstein et al '15]
Outerplanar	[Diaz et al '17]

NP-complete

[Garey, Johnson '79]
[Epstein et al '15]
[Epstein et al '15]
[Epstein et al '15]
[Diaz et al '17]
[Foucaud et al '17]

Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale

Tight (Double) Exponential Bounds for NP-Complete Problems

Parameterized complexity of METRIC DIMENSION

NP-hard in graphs of diameter 2 [Foucaud, Mertzios, Naserasr, Parreau, Valicov '17].

NP-hard in graphs of pathwidth 24 [Li, Pilipczuk '22].

7/14

Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale Tight (Double) Exponential Bounds for NP-Complete Problems

First tool: bit-representation gadget

Purple edges represent all possible edges.

Key: bit-rep(X) has size $O(\log |X|)$ and distinguishes each vertex in X from every other vertex in G.

3-PARTITIONED-3-SAT [Lampis, Melissinos, Vasilakis, 2023]

Input: a 3-CNF formula ϕ with a partition of its variables into 3 disjoint sets X^{α} , X^{β} , and X^{γ} such that $|X^{\alpha}| = |X^{\beta}| = |X^{\gamma}| = n$ and each clause contains at most one variable from each of X^{α} , X^{β} , and X^{γ} .

Question: Is ϕ satisfiable?

3-PARTITIONED-3-SAT [Lampis, Melissinos, Vasilakis, 2023]

Input: a 3-CNF formula ϕ with a partition of its variables into 3 disjoint sets X^{α} , X^{β} , and X^{γ} such that $|X^{\alpha}| = |X^{\beta}| = |X^{\gamma}| = n$ and each clause contains at most one variable from each of X^{α} , X^{β} , and X^{γ} .

Question: Is ϕ satisfiable?

Theorem [Lampis, Melissinos, Vasilakis, 2023]

Unless the ETH fails, 3-PARTITIONED-3-SAT does not admit an algorithm running in time $2^{o(n)}$.

Part II of our technique: encode SAT with small separator

10/14

Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale Tig

Part II of our technique: set-representation gadget

Let F_p be the collection of subsets of $\{1, \ldots, 2p\}$ that contain exactly p integers. No set in F_p is contained in another set in F_p (Sperner family).

There exists $p = O(\log n)$ s.t. $\binom{2p}{p} \ge 2n$. We define a 1-to-1 function set-rep : $\{1, \ldots, 2n\} \to F_p$.

Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale

Tight (Double) Exponential Bounds for NP-Complete Problems

Lower bound for Metric Dimension parameterized by tw

Theorem [Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2023]

Unless the ETH fails, METRIC DIMENSION does not admit an algorithm running in time $2^{f(\text{diam})^{o(tv)}} \cdot n^{O(1)}$, for any computable function f.

Purple edges represent all possible edges.

Blue edges represent set-rep and red edges are complementary to blue ones.

Budget of 3*n* vertices excluding bit-rep gadgets.

Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale

Tight (Double) Exponential Bounds for NP-Complete Problems

Theorem [Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2023]

Unless the ETH fails, METRIC DIMENSION and GEODETIC SET do not admit algorithms running in time $2^{o(vc^2)}$.

Theorem [Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2023]

Unless the ETH fails, METRIC DIMENSION, GEODETIC SET, and STRONG METRIC DIMENSION do not admit kernelization algorithms outputting kernels with $2^{o(vc)}$ vertices.

We also give matching upper bounds (algorithms and kernels) for our lower bounds.

As far as we know, such kernelization lower bounds were only known for EDGE CLIQUE COVER [Cygan, Pilipczuk, Pilipczuk, 2016] and BICLIQUE COVER [Chandran, Issac, Karrenbauer, 2016].

Theorem [Chalopin, Chepoi, Mc Inerney, Ratel, 2023]

Unless the ETH fails, POSITIVE NON-CLASHING TEACHING DIMENSION FOR BALLS IN GRAPHS does not admit a $2^{2^{o(vc)}} \cdot n^{O(1)}$ -time algorithm, nor a kernelization algorithm outputting a kernel with $2^{o(vc)}$ vertices.

Theorem [Chalopin, Chepoi, Mc Inerney, Ratel, 2023]

Unless the ETH fails, POSITIVE NON-CLASHING TEACHING DIMENSION FOR BALLS IN GRAPHS does not admit a $2^{2^{o(vc)}} \cdot n^{O(1)}$ -time algorithm, nor a kernelization algorithm outputting a kernel with $2^{o(vc)}$ vertices.

Question: For which classic problems in NP are the best known FPT algorithms parameterized by tw or vc double-exponential?

Question: For which classic problems do the best known kernelization algorithms output a kernel with $2^{O(vc)}$ vertices?

Theorem [Chalopin, Chepoi, Mc Inerney, Ratel, 2023]

Unless the ETH fails, POSITIVE NON-CLASHING TEACHING DIMENSION FOR BALLS IN GRAPHS does not admit a $2^{2^{o(vc)}} \cdot n^{O(1)}$ -time algorithm, nor a kernelization algorithm outputting a kernel with $2^{o(vc)}$ vertices.

Question: For which classic problems in NP are the best known FPT algorithms parameterized by tw or vc double-exponential?

Question: For which classic problems do the best known kernelization algorithms output a kernel with $2^{O(vc)}$ vertices?

Thanks!