Motivatio 00 Spherewidth 0000000 Perspectives

A Structural Approach to Tree Decompositions of Knots and Spatial Graphs

<u>Corentin Lunel</u> Univ. Gustave Eiffel Paris, France Arnaud de Mesmay Univ. Gustave Eiffel CNRS, Paris, France

Motivatio 00 Spherewidth

Perspectives 0

Knot:

A **knot** is a polygonal embedding $\mathbb{S}^1 \to \mathbb{S}^3$ considered up to ambient isotopy, i.e. continuous deformation without self intersection.

Motivation 00 Spherewidth 0000000

Perspectives

Knots

Knot:

A **knot** is a polygonal embedding $\mathbb{S}^1 \to \mathbb{S}^3$ considered up to ambient isotopy, i.e. continuous deformation without self intersection.

Natural algorithmic question :

Is a given knot equivalent to the trivial one ? In NP \cap co-NP [Hass-Lagarias-Pippenger 1999] and [Lackenby 2018].

Perspectives 0

Torus knots

A **torus knot** is a knot that can be embedded on the standard torus.

Perspectives 0

Torus knots

A **torus knot** is a knot that can be embedded on the standard torus.

 $T_{6,5}$, a torus knot.

Perspectives 0

Torus knots

A **torus knot** is a knot that can be embedded on the standard torus.

Two representations of $T_{6,5}$.

Knot diagram

A **knot diagram** is a generic projection of a knot in the plane, it can be seen as a decorated 4-valent planar graph.

Spherewidth 0000000 Perspectives 0

Treewidth of a graph

The **treewidth** aims to measure "how close" a graph is to a tree. Some examples

• Small treewidth:

Spherewidth 0000000 Perspectives 0

Treewidth of a graph

The **treewidth** aims to measure "how close" a graph is to a tree. Some examples

• Small treewidth:

• High treewidth:

Motivatio 00 Spherewidth 0000000

Perspectives 0

A question

Treewidth of knots

The **treewidth of a knot** K is tw(K): the minimal treewidth among all of its diagrams.

Motivation 00 Spherewidth 0000000

Perspectives

A question

Treewidth of knots

The **treewidth of a knot** K is tw(K): the minimal treewidth among all of its diagrams.

Knots always have diagrams with high treewidth.

Motivation 00 Spherewidth

Perspectives 0

A question

Treewidth of knots

The **treewidth of a knot** K is tw(K): the minimal treewidth among all of its diagrams.

Knots always have diagrams with high treewidth.

Question from [Makowsky and Mariño, 2003] and [Burton, 2016]:

Are there knots for which all diagrams have high treewidth?

Motivation 00 Spherewidth 0000000

Perspectives

Question from [Makowsky and Mariño, 2003] and [Burton, 2016]:

Are there knots for which all diagrams have high treewidth?

Theorem [de Mesmay, Purcell, Schleimer, Sedgwick, 2019]: Let $T_{p,q}$ be a torus knot. Then tw $(T_{p,q}) = \Omega(\min(p,q))$.

Perspectives 0

Question from [Makowsky and Mariño, 2003] and [Burton, 2016]:

Are there knots for which all diagrams have high treewidth?

Theorem [de Mesmay, Purcell, Schleimer, Sedgwick, 2019]: Let $T_{p,q}$ be a torus knot. Then tw $(T_{p,q}) = \Omega(\min(p,q))$.

Our contribution

We introduce tools, inspired form structural graph theory, to answer that question positively:

- **Spherewidth**, a measure of how close a knot is to a tree, and a lower bound to treewidth.
- **Bubble tangles**, an optimal obstruction (lower bound) to spherewidth arising from embeddings on surfaces.

Spherewidth 0000000 Perspectives 0

Why is treewidth interesting?

• It plays a major role in the **graph minor theory** from Robertson and Seymour.

Perspectives 0

Why is treewidth interesting?

- It plays a major role in the **graph minor theory** from Robertson and Seymour.
- Key tool for dynamic programming. For example, on knots: Jones polynomial, Kauffman polynomial [Makowsky and Mariño, 2003], HOMFLY-PT polynomial [Burton, 2018], and quantum invariants [Maria, 2019] are efficiently computable on small treewidth diagrams of knots.

Perspectives 0

Why is treewidth interesting?

- It plays a major role in the **graph minor theory** from Robertson and Seymour.
- Key tool for dynamic programming. For example, on knots: Jones polynomial, Kauffman polynomial [Makowsky and Mariño, 2003], HOMFLY-PT polynomial [Burton, 2018], and quantum invariants [Maria, 2019] are efficiently computable on small treewidth diagrams of knots.
- Relevant in other areas of topology: For example: 3-manifolds [Huszár, Spreer, and Wagner, 2018], lower bounds distortion on knots [Pardon, 2011]...

Perspectives

Our contribution

Let *K* be a knot or **spatial graph** embedded in \mathbb{S}^3 . Its **Spherewidth** is written sw(K).

Proposition $sw(K) \leq 2tw(K)$.

Theorem 1

Let *n* be the maximal order of a **bubble tangle** on *K*, sw(K) = n.

Theorem 2

Let *K* be a knot or spatial graph with the nested embeddings $K \hookrightarrow \Sigma \hookrightarrow \mathbb{S}^3$. Then there exists a **bubble tangle** of order $\frac{2}{3} \times crep(K, \Sigma)$.

Motivation 00 Spherewidth

Perspectives 0

Spherewidth definition

A double bubble : two spheres that intersect on a single disk.

Sphere decomposition

A sphere decomposition of \mathbb{S}^3 is a continuous map $f : \mathbb{S}^3 \to T$ where T is a trivalent tree such that:

$$f^{-1}: \begin{cases} \text{leaf} & \mapsto \text{ point} \\ \text{vertex} & \mapsto \text{ double bubble} \\ \text{point interior to an edge} & \mapsto \text{ sphere} \end{cases}$$

Motivation 00 Spherewidth

Perspectives 0

Sphere decomposition

A sphere decomposition of \mathbb{S}^3 is a continuous map $f : \mathbb{S}^3 \to T$ where T is a trivalent tree such that:

$$f^{-1}: \begin{cases} leaf & \mapsto \text{ point} \\ \text{ vertex } & \mapsto \text{ double bubble} \\ \text{ point interior to an edge } & \mapsto \text{ sphere} \end{cases}$$

The spherewidth of *K* written $\mathbf{sw}(K)$ is : $\mathbf{sw}(K) = \inf_{f} \sup_{e \in E(T), x \in \mathring{e}} |f^{-1}(x) \cap K|.$

Motivation 00 Spherewidth

Perspectives 0

Spherewidth

The spherewidth of *K* written $\mathbf{sw}(K)$ is : $\mathbf{sw}(K) = \inf_{f} \sup_{e \in E(T), x \in \mathring{e}} |f^{-1}(x) \cap K|.$

Proposition $sw(K) \leq 2tw(K)$.

Motivatio 00 Spherewidth

Perspectives

Bubble tangle on knots

Bubble tangle

Let K be a knot, a **bubble tangle of order** n, denoted \mathcal{T} , is a collection of closed balls of \mathbb{S}^3 with less than n intersections with K on their boundaries such that:

• For any sphere S of \mathbb{S}^3 , if $|S \cap K| < n$ then exactly one side of S is in \mathcal{T} .

Perspectives 0

Bubble tangle on knots

Bubble tangle

Let K be a knot, a **bubble tangle of order** n, denoted \mathcal{T} , is a collection of closed balls of \mathbb{S}^3 with less than n intersections with K on their boundaries such that:

- For any sphere S of \mathbb{S}^3 , if $|S \cap K| < n$ then exactly one side of S is in \mathcal{T} .
- For any three closed balls B_1 , B_2 , B_3 that induces a double bubble, not all three of B_1 , B_2 , B_3 are in \mathcal{T} .

Perspectives 0

Bubble tangle on knots

Bubble tangle

Let K be a knot, a **bubble tangle of order** n, denoted \mathcal{T} , is a collection of closed balls of \mathbb{S}^3 with less than n intersections with K on their boundaries such that:

- For any sphere S of \mathbb{S}^3 , if $|S \cap K| < n$ then exactly one side of S is in \mathcal{T} .
- For any three closed balls B_1 , B_2 , B_3 that induces a double bubble, not all three of B_1 , B_2 , B_3 are in \mathcal{T} .
- T contains trivial balls:

Motivation 00 Spherewidth

Perspectives 0

Results

Proposition

Motivation 00 Spherewidth

Perspectives 0

Results

Proposition

Motivation 00 Spherewidth

Perspectives 0

Results

Proposition

Motivation 00 Spherewidth

Perspectives 0

Results

Proposition

Motivation 00 Spherewidth

Perspectives 0

Results

Proposition

If there exists a **bubble tangle** of order *n* on *K* then $sw(K) \ge n$.

The orientation is consistent on half edges and necessarily has a sink.

Motivation 00 Spherewidth

Perspectives 0

Proposition

If there exists a **bubble tangle** of order *n* on *K* then $sw(K) \ge n$.

Theorem 1 Let *n* be the maximal order of a **bubble tangle** on K, sw(K) = n.

Perspectives

Bubble tangle from representativity

Compression representativity

If $K \hookrightarrow \Sigma \hookrightarrow \mathbb{S}^3$, the **compression representativity** $crep(K, \Sigma)$ of K on Σ is the minimum number of intersection between a non contractible, compressible curve on Σ and K.

Perspectives

Bubble tangle from representativity

Compression representativity

If $K \hookrightarrow \Sigma \hookrightarrow \mathbb{S}^3$, the **compression representativity** $crep(K, \Sigma)$ of K on Σ is the minimum number of intersection between a non contractible, compressible curve on Σ and K.

Perspectives

Bubble tangle from representativity

Compression representativity

If $K \hookrightarrow \Sigma \hookrightarrow \mathbb{S}^3$, the **compression representativity** $crep(K, \Sigma)$ of K on Σ is the minimum number of intersection between a non contractible, compressible curve on Σ and K.

The compression representativity of the torus knot $T_{p,q}$ is $\min(p,q)$.

Motivation 00 Spherewidth

Perspectives 0

If the length of the mouth of pacman is less than the compression representativity, he can only eat a disc of the donut.

Perspectives 0

If a sphere intersects the knot less times than the compression representativity, then one of the sides of the sphere only contains discs of the surface.

Theorem 2

Let K be a knot or spatial graph embedded such that $K \hookrightarrow \Sigma \hookrightarrow \mathbb{S}^3$. Then there exists a **bubble tangle** of order $\frac{2}{3} \times crep(K, \Sigma)$.

Corollary Torus knots have high treewidth.

Motivatio 00 Spherewidth

Perspectives

Perspectives

Questions:

- Can we do better than ²/₃ in theorem 2? We conjecture ⁴/₃ for torus knots.
- Are there more concepts to import from structural graph theory?
- Can we design FPT algorithms on knots using spherewidth?
- Can we compute some graph invariant on spatial graphs using spherewidth?

For example carving width on linkless graphs.

Motivatio 00 Spherewidth

Perspectives

Perspectives

Questions:

- Can we do better than ²/₃ in theorem 2? We conjecture ⁴/₃ for torus knots.
- Are there more concepts to import from structural graph theory?
- Can we design FPT algorithms on knots using spherewidth?
- Can we compute some graph invariant on spatial graphs using spherewidth?

For example carving width on linkless graphs.

Thank you for listening! Questions?

Removing an inessential curve from S.

Transformation from a double bubble to S'

Annexe

Annexe

Annexe

