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Some definitions

Definition
Hamiltonian cycle (resp. path): cycle (resp. path)
containing all vertices of the graph exactly once.

Definition
A graph is Hamiltonian if it contains a Hamiltonian cycle.

Determining if a graph is Hamiltonian is NP-complete.

Property

Every graph with a vertex cut-set is non-Hamiltonian
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Cut-sets

What if S is a cut-set such that |S| ≥ 2?

c(H) is the number of connected components of a graph H .
Is there a link between c(G[V \ S]) and |S| for a Hamiltonian graph?
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t-tough graph

Definition
A graph G is t-tough if, for all subsets of vertices S, t× c(G[V \ S]) ≤ |S|

S
|S| = 5

c(G[V \ S]) = 3
G is not 2-tough

Conjecture (Chvàtal, 1973)

∃t such that every t-tough graph is Hamiltonian.
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The property P (t)

Degree sequence: d1 ≤ d2 ≤ · · · ≤ dn such that di is the degree of vi ∀vi ∈ V (G).

Definition
G is P (t) if ∀i < n

2 di ≤ i⇒ dn−i+t ≥ n− i.

d1 d2 di−1 di di+1 dn−i+t dn
. . . . . . . . . . . . . . . . . . . . .

n
2

⇒We need to extend the closure lemma: the t-closure lemma
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The Closure Lemma

Definition
G∗ is the closure of G if :

1. V (G) = V (G∗)

2. E(G∗) = E(G) ∪ {xy : d(x) + d(y) ≥ n}

The Closure Lemma (Bondy and Chvatàl, 1976)

A graph G is Hamiltonian if and only if its closure G∗ is Hamiltonian.

C. Robin Tough graphs and Hamiltonian degree condition 6 / 10



The Closure Lemma

Definition
G∗ is the closure of G if :

1. V (G) = V (G∗)

2. E(G∗) = E(G) ∪ {xy : d(x) + d(y) ≥ n}

The Closure Lemma (Bondy and Chvatàl, 1976)
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The t-closure Lemma

Definition
G∗ is the t-closure of G if :

1. V (G) = V (G∗)

2. E(G∗) = E(G) ∪ {xy : d(x) + d(y) ≥ n− t}

The t-closure Lemma (Hoàng and Robin, 2023)

A t-tough graph G is Hamiltonian if and only if its 2t+1
3 closure G∗ is Hamiltonian.

(t ≥ 2).
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Proof of the 1-closure lemma

The 1-closure lemma (Hoàng and Robin, 2023)
If G is 2-tough then G is Hamiltonian if and only if its 1-closure is.

Suppose G∗ Hamiltonian but not G

S = V \ (N [x] ∪N [y])

x
v2

v3

vi−1

vi vj−1

vj

vj+1

vn−2

vn−1

y

I d(x) + d(y) = n− 1

I xvi ∈ E ⇒ yvi−1 /∈ E

I |N(x) ∩N(y)| ≥ 2

I ∀vi ∈ S, vi−1y ∈ E and vi+1x ∈ E

I N(S) ⊆ {vi : vi+1 ∈ S or vi−1 ∈ S}
I |N(S)| = 2|S|
I S stable in G and so c(G[V \N(S)]) ≥ |S|+ 1

I G is 2-tough⇔ 2c(G[V \N(S)]) ≤ |N(S)|,
a contradiction.
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4-tough and P (4)

Theorem (Hoàng and Robin 2023)

If G is 4-tough and P (4) then G is Hamiltonian.

I Take the 3-closure of G
I ∃Ω a universal clique of size at

least n
2 − 4.

I c(G[V \ Ω]) ≤ n
8 − 1

I ∆(G[V \ Ω]) ≤ 2

And t ≥ 5?

Ω

Cl

C2

C1
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Theorem (Hoàng and Robin 2023)

If G is 4-tough and P (4) then G is Hamiltonian.

I Take the 3-closure of G
I ∃Ω a universal clique of size at

least n
2 − 4.

I c(G[V \ Ω]) ≤ n
8 − 1

I ∆(G[V \ Ω]) ≤ 2

And t ≥ 5?

Ω

Cl

C2

C1

C. Robin Tough graphs and Hamiltonian degree condition 9 / 10



4-tough and P (4)
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Conclusion

Theorem (Hoàng and Robin 2023)

For t ≤ 4, if G is t-tough and P (t) then G is Hamiltonian

The t-closure lemma (Hoàng and Robin 2023)

A t-tough graph G is Hamiltonian if and only if its 2t+1
3 -closure G∗ isHamiltonian.

(t ≥ 2).

Thank you !
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