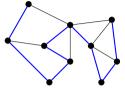
TOUGH GRAPHS AND HAMILTONIAN DEGREE CONDITIONS

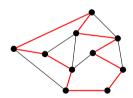
Chính T. Hoáng ¹ & Cléophée Robin¹²

¹Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo (ON), Canada
²Normandie Univ, UNICAEN, ENSICAEN, Caen, France

Definition

Hamiltonian cycle (resp. path): cycle (resp. path) containing all vertices of the graph exactly once.



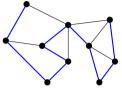


Definition

Hamiltonian cycle (resp. path): cycle (resp. path) containing all vertices of the graph exactly once.

Definition

A graph is Hamiltonian if it contains a Hamiltonian cycle.



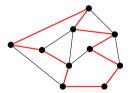
Definition

Definition

A graph is Hamiltonian if it contains a Hamiltonian cycle.

Determining if a graph is Hamiltonian is NP-complete.

Hamiltonian cycle (resp. path): cycle (resp. path) containing all vertices of the graph exactly once.



Definition

Hamiltonian cycle (resp. path): cycle (resp. path) containing all vertices of the graph exactly once.

Definition

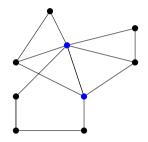
A graph is Hamiltonian if it contains a Hamiltonian cycle.

Determining if a graph is Hamiltonian is NP-complete.

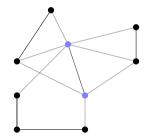
Property

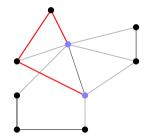
Every graph with a vertex cut-set is non-Hamiltonian

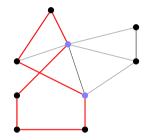
Cut-sets

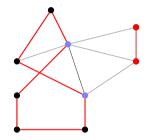


Cut-sets

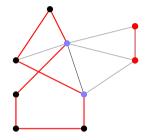






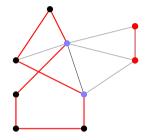


What if S is a cut-set such that $|S| \ge 2$?



c(H) is the number of connected components of a graph H.

What if S is a cut-set such that $|S| \ge 2$?

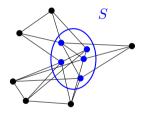


c(H) is the number of connected components of a graph H. Is there a link between $c(G[V \setminus S])$ and |S| for a Hamiltonian graph?

t-tough graph

Definition

A graph G is t -tough if, for all subsets of vertices S , $t \times c(G[V \setminus S]) \leq |S|$



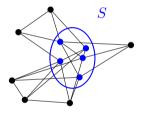
$$|S| = 5$$

 $c(G[V \setminus S]) = 3$
 G is not 2-tough

t-tough graph

Definition

A graph G is t-tough if, for all subsets of vertices S, $t \times c(G[V \setminus S]) \le |S|$



$$|S| = 5$$

 $c(G[V \setminus S]) = 3$
 G is not 2-tough

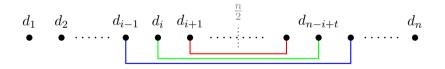
Conjecture (Chvàtal, 1973)

 $\exists t \text{ such that every } t \text{-tough graph is Hamiltonian.}$

Degree sequence: $d_1 \leq d_2 \leq \cdots \leq d_n$ such that d_i is the degree of $v_i \forall v_i \in V(G)$.

Definition

G is P(t) if $\forall i < \frac{n}{2} d_i \le i \Rightarrow d_{n-i+t} \ge n-i$.



Degree sequence: $d_1 \leq d_2 \leq \cdots \leq d_n$ such that d_i is the degree of $v_i \forall v_i \in V(G)$.

Definition

$$G \text{ is } P(t) \text{ if } \forall i < \frac{n}{2} d_i \leq i \Rightarrow d_{n-i+t} \geq n-i.$$

Theorem (Chvàtal 1972)

If $\forall i < \frac{n}{2} d_i \leq i \Rightarrow d_{n-i} \geq n-i$, then G is Hamiltonian.

Degree sequence: $d_1 \leq d_2 \leq \cdots \leq d_n$ such that d_i is the degree of $v_i \forall v_i \in V(G)$.

Definition

G is P(t) if $\forall i < \frac{n}{2} d_i \le i \Rightarrow d_{n-i+t} \ge n-i$.

Theorem (Chvàtal 1972)

If G is P(0) then G is Hamiltonian.

Degree sequence: $d_1 \leq d_2 \leq \cdots \leq d_n$ such that d_i is the degree of $v_i \forall v_i \in V(G)$.

Definition

G is P(t) if $\forall i < \frac{n}{2} d_i \le i \Rightarrow d_{n-i+t} \ge n-i$.

Conjecture (Hoàng 1995)

If G is t-tough and P(t) then G is Hamiltonian.

Degree sequence: $d_1 \leq d_2 \leq \cdots \leq d_n$ such that d_i is the degree of $v_i \forall v_i \in V(G)$.

Definition

G is P(t) if $\forall i < \frac{n}{2} d_i \le i \Rightarrow d_{n-i+t} \ge n-i$.

Theorem (Hoàng 1995)

For $t \leq 3$, if G is t-tough and P(t) then G is Hamiltonian.

Degree sequence: $d_1 \leq d_2 \leq \cdots \leq d_n$ such that d_i is the degree of $v_i \forall v_i \in V(G)$.

Definition

G is P(t) if $\forall i < \frac{n}{2} d_i \le i \Rightarrow d_{n-i+t} \ge n-i$.

Theorem (Hoàng and Robin 2023)

For $t \leq 4$, if G is t-tough and P(t) then G is Hamiltonian.

Degree sequence: $d_1 \leq d_2 \leq \cdots \leq d_n$ such that d_i is the degree of $v_i \forall v_i \in V(G)$.

Definition

G is P(t) if $\forall i < \frac{n}{2} d_i \le i \Rightarrow d_{n-i+t} \ge n-i$.

Theorem (Hoàng and Robin 2023)

For $t \leq 4$, if G is t-tough and P(t) then G is Hamiltonian.

 \Rightarrow We need to extend the closure lemma: the *t*-closure lemma

C. Robin

The Closure Lemma

Definition

G^* is the *closure* of G if :

- 1. $V(G) = V(G^*)$
- 2. $E(G^*) = E(G) \cup \{xy : d(x) + d(y) \ge n\}$

The Closure Lemma

Definition

G^* is the *closure* of G if :

- 1. $V(G) = V(G^*)$
- 2. $E(G^*) = E(G) \cup \{xy : d(x) + d(y) \ge n\}$

The Closure Lemma

Definition

G^* is the *closure* of G if :

- 1. $V(G) = V(G^*)$
- 2. $E(G^*) = E(G) \cup \{xy : d(x) + d(y) \ge n\}$

The Closure Lemma (Bondy and Chvatàl, 1976)

A graph G is Hamiltonian if and only if its closure G^* is Hamiltonian.

The *t*-closure Lemma

Definition

 G^* is the *t*-closure of G if :

- 1. $V(G) = V(G^*)$
- 2. $E(G^*) = E(G) \cup \{xy : d(x) + d(y) \ge n t\}$

The *t*-closure Lemma

Definition

 G^* is the *t*-closure of G if :

1. $V(G) = V(G^*)$

2.
$$E(G^*) = E(G) \cup \{xy : d(x) + d(y) \ge n - t\}$$

The *t*-closure Lemma (Hoàng and Robin, 2023)

A *t*-tough graph *G* is Hamiltonian if and only if its $\frac{2t+1}{3}$ closure *G*^{*} is Hamiltonian. ($t \ge 2$).

The 1-closure lemma (Hoàng and Robin, 2023)

If G is 2-tough then G is Hamiltonian if and only if its 1-closure is.

The 1-closure lemma (Hoàng and Robin, 2023)

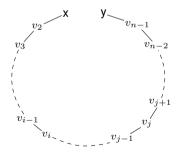
G is 2-tough and $x, y \in V$ such that $xy \notin E$ and $d(x) + d(y) \ge n - 1$ $G^* = (V(G), E(G) \cup \{xy\})$ is Hamiltonian $\Leftrightarrow G$ is Hamiltonian.

The 1-closure lemma (Hoàng and Robin, 2023)

G is 2-tough and $x, y \in V$ such that $xy \notin E$ and $d(x) + d(y) \ge n - 1$ $G^* = (V(G), E(G) \cup \{xy\})$ is Hamiltonian $\Leftrightarrow G$ is Hamiltonian.

The 1-closure lemma (Hoàng and Robin, 2023)

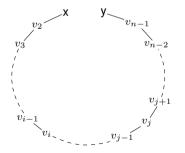
G is 2-tough and $x, y \in V$ such that $xy \notin E$ and $d(x) + d(y) \ge n - 1$ $G^* = (V(G), E(G) \cup \{xy\})$ is Hamiltonian $\Leftrightarrow G$ is Hamiltonian.



The 1-closure lemma (Hoàng and Robin, 2023)

G is 2-tough and $x, y \in V$ such that $xy \notin E$ and $d(x) + d(y) \ge n - 1$ $G^* = (V(G), E(G) \cup \{xy\})$ is Hamiltonian $\Leftrightarrow G$ is Hamiltonian.

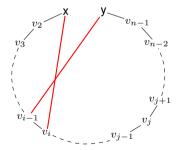
$$\blacktriangleright \ d(x) + d(y) = n - 1$$



The 1-closure lemma (Hoàng and Robin, 2023)

G is 2-tough and $x, y \in V$ such that $xy \notin E$ and $d(x) + d(y) \ge n - 1$ $G^* = (V(G), E(G) \cup \{xy\})$ is Hamiltonian $\Leftrightarrow G$ is Hamiltonian.

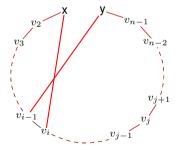
$$\blacktriangleright \ d(x) + d(y) = n - 1$$



The 1-closure lemma (Hoàng and Robin, 2023)

G is 2-tough and $x, y \in V$ such that $xy \notin E$ and $d(x) + d(y) \ge n - 1$ $G^* = (V(G), E(G) \cup \{xy\})$ is Hamiltonian $\Leftrightarrow G$ is Hamiltonian.

$$\blacktriangleright \ d(x) + d(y) = n - 1$$

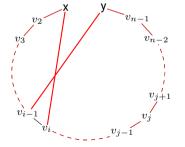


The 1-closure lemma (Hoàng and Robin, 2023)

G is 2-tough and $x, y \in V$ such that $xy \notin E$ and $d(x) + d(y) \ge n - 1$ $G^* = (V(G), E(G) \cup \{xy\})$ is Hamiltonian $\Leftrightarrow G$ is Hamiltonian.

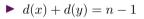
$$\blacktriangleright \ d(x) + d(y) = n - 1$$

$$\blacktriangleright xv_i \in E \Rightarrow yv_{i-1} \notin E$$



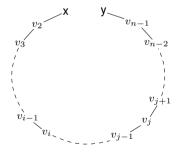
The 1-closure lemma (Hoàng and Robin, 2023)

G is 2-tough and $x, y \in V$ such that $xy \notin E$ and $d(x) + d(y) \ge n - 1$ $G^* = (V(G), E(G) \cup \{xy\})$ is Hamiltonian $\Leftrightarrow G$ is Hamiltonian.



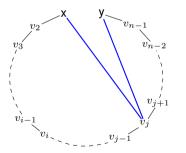
$$\blacktriangleright xv_i \in E \Rightarrow yv_{i-1} \notin E$$

$$\blacktriangleright |N(x) \cap N(y)| \ge 1$$



The 1-closure lemma (Hoàng and Robin, 2023)

G is 2-tough and $x, y \in V$ such that $xy \notin E$ and $d(x) + d(y) \ge n - 1$ $G^* = (V(G), E(G) \cup \{xy\})$ is Hamiltonian $\Leftrightarrow G$ is Hamiltonian.



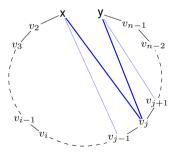
$$\blacktriangleright \ d(x) + d(y) = n - 1$$

$$\blacktriangleright xv_i \in E \Rightarrow yv_{i-1} \notin E$$

$$\blacktriangleright |N(x) \cap N(y)| \ge 1$$

The 1-closure lemma (Hoàng and Robin, 2023)

G is 2-tough and $x, y \in V$ such that $xy \notin E$ and $d(x) + d(y) \ge n - 1$ $G^* = (V(G), E(G) \cup \{xy\})$ is Hamiltonian $\Leftrightarrow G$ is Hamiltonian.



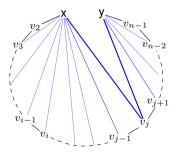
$$\blacktriangleright \ d(x) + d(y) = n - 1$$

$$\blacktriangleright xv_i \in E \Rightarrow yv_{i-1} \notin E$$

$$\blacktriangleright |N(x) \cap N(y)| \ge 1$$

The 1-closure lemma (Hoàng and Robin, 2023)

G is 2-tough and $x, y \in V$ such that $xy \notin E$ and $d(x) + d(y) \ge n - 1$ $G^* = (V(G), E(G) \cup \{xy\})$ is Hamiltonian $\Leftrightarrow G$ is Hamiltonian.



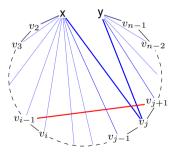
$$\blacktriangleright \ d(x) + d(y) = n - 1$$

$$\blacktriangleright xv_i \in E \Rightarrow yv_{i-1} \notin E$$

$$\blacktriangleright |N(x) \cap N(y)| \ge 1$$

The 1-closure lemma (Hoàng and Robin, 2023)

G is 2-tough and $x, y \in V$ such that $xy \notin E$ and $d(x) + d(y) \ge n - 1$ $G^* = (V(G), E(G) \cup \{xy\})$ is Hamiltonian $\Leftrightarrow G$ is Hamiltonian.



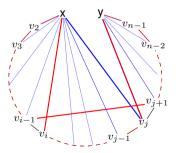
$$\blacktriangleright \ d(x) + d(y) = n - 1$$

$$\blacktriangleright xv_i \in E \Rightarrow yv_{i-1} \notin E$$

$$\blacktriangleright |N(x) \cap N(y)| \ge 1$$

The 1-closure lemma (Hoàng and Robin, 2023)

G is 2-tough and $x, y \in V$ such that $xy \notin E$ and $d(x) + d(y) \ge n - 1$ $G^* = (V(G), E(G) \cup \{xy\})$ is Hamiltonian $\Leftrightarrow G$ is Hamiltonian.



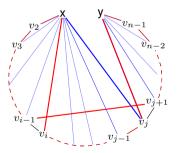
$$\blacktriangleright \ d(x) + d(y) = n - 1$$

$$\blacktriangleright xv_i \in E \Rightarrow yv_{i-1} \notin E$$

$$\blacktriangleright |N(x) \cap N(y)| \ge 1$$

The 1-closure lemma (Hoàng and Robin, 2023)

G is 2-tough and $x, y \in V$ such that $xy \notin E$ and $d(x) + d(y) \ge n - 1$ $G^* = (V(G), E(G) \cup \{xy\})$ is Hamiltonian $\Leftrightarrow G$ is Hamiltonian.



$$\blacktriangleright \ d(x) + d(y) = n - 1$$

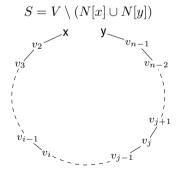
$$xv_i \in E \Rightarrow yv_{i-1} \notin E$$

$$\blacktriangleright |N(x) \cap N(y)| \ge 2$$

The 1-closure lemma (Hoàng and Robin, 2023)

G is 2-tough and $x, y \in V$ such that $xy \notin E$ and $d(x) + d(y) \ge n - 1$ $G^* = (V(G), E(G) \cup \{xy\})$ is Hamiltonian $\Leftrightarrow G$ is Hamiltonian.

Suppose G^* Hamiltonian but not G



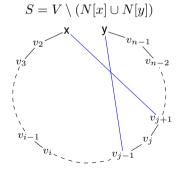
 $\blacktriangleright \ d(x) + d(y) = n - 1$

$$\blacktriangleright xv_i \in E \Rightarrow yv_{i-1} \notin E$$

$$\blacktriangleright |N(x) \cap N(y)| \ge 2$$

The 1-closure lemma (Hoàng and Robin, 2023)

G is 2-tough and $x, y \in V$ such that $xy \notin E$ and $d(x) + d(y) \ge n - 1$ $G^* = (V(G), E(G) \cup \{xy\})$ is Hamiltonian $\Leftrightarrow G$ is Hamiltonian.



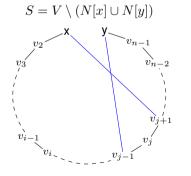
- $\blacktriangleright \ d(x) + d(y) = n 1$
- $\blacktriangleright xv_i \in E \Rightarrow yv_{i-1} \notin E$
- $\blacktriangleright |N(x) \cap N(y)| \ge 2$

$$\blacktriangleright \ \forall v_i \in S, v_{i-1}y \in E \text{ and } v_{i+1}x \in E$$

The 1-closure lemma (Hoàng and Robin, 2023)

G is 2-tough and $x, y \in V$ such that $xy \notin E$ and $d(x) + d(y) \ge n - 1$ $G^* = (V(G), E(G) \cup \{xy\})$ is Hamiltonian $\Leftrightarrow G$ is Hamiltonian.

Suppose G^* Hamiltonian but not G



 $\blacktriangleright \ d(x) + d(y) = n - 1$

$$\blacktriangleright xv_i \in E \Rightarrow yv_{i-1} \notin E$$

$$\blacktriangleright |N(x) \cap N(y)| \ge 2$$

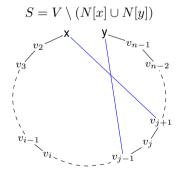
$$\blacktriangleright \ \forall v_i \in S, v_{i-1}y \in E \text{ and } v_{i+1}x \in E$$

$$\blacktriangleright N(S) \subseteq \{v_i : v_{i+1} \in S \text{ or } v_{i-1} \in S\}$$

The 1-closure lemma (Hoàng and Robin, 2023)

G is 2-tough and $x, y \in V$ such that $xy \notin E$ and $d(x) + d(y) \ge n - 1$ $G^* = (V(G), E(G) \cup \{xy\})$ is Hamiltonian $\Leftrightarrow G$ is Hamiltonian.

Suppose G^* Hamiltonian but not G



 $\blacktriangleright \ d(x) + d(y) = n - 1$

$$\blacktriangleright xv_i \in E \Rightarrow yv_{i-1} \notin E$$

$$\blacktriangleright |N(x) \cap N(y)| \ge 2$$

$$\blacktriangleright \ \forall v_i \in S, v_{i-1}y \in E \text{ and } v_{i+1}x \in E$$

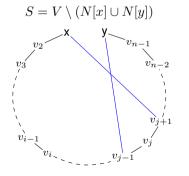
$$\blacktriangleright N(S) \subseteq \{v_i : v_{i+1} \in S \text{ or } v_{i-1} \in S\}$$

$$\blacktriangleright |N(S)| = 2|S|$$

The 1-closure lemma (Hoàng and Robin, 2023)

G is 2-tough and $x, y \in V$ such that $xy \notin E$ and $d(x) + d(y) \ge n - 1$ $G^* = (V(G), E(G) \cup \{xy\})$ is Hamiltonian $\Leftrightarrow G$ is Hamiltonian.

Suppose G^* Hamiltonian but not G



 $\blacktriangleright \ d(x) + d(y) = n - 1$

$$\blacktriangleright xv_i \in E \Rightarrow yv_{i-1} \notin E$$

- $\blacktriangleright |N(x) \cap N(y)| \geq 2$
- $\blacktriangleright \ \forall v_i \in S \text{, } v_{i-1}y \in E \text{ and } v_{i+1}x \in E$

•
$$N(S) \subseteq \{v_i : v_{i+1} \in S \text{ or } v_{i-1} \in S\}$$

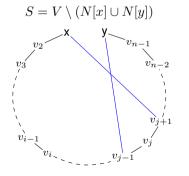
$$\blacktriangleright |N(S)| = 2|S|$$

• S stable in G and so $c(G[V \setminus N(S)]) \ge |S| + 1$

The 1-closure lemma (Hoàng and Robin, 2023)

G is 2-tough and $x, y \in V$ such that $xy \notin E$ and $d(x) + d(y) \ge n - 1$ $G^* = (V(G), E(G) \cup \{xy\})$ is Hamiltonian $\Leftrightarrow G$ is Hamiltonian.

Suppose G^* Hamiltonian but not G



 $\blacktriangleright \ d(x) + d(y) = n - 1$

$$\blacktriangleright xv_i \in E \Rightarrow yv_{i-1} \notin E$$

- $\blacktriangleright |N(x) \cap N(y)| \geq 2$
- $\blacktriangleright \ \forall v_i \in S, v_{i-1}y \in E \text{ and } v_{i+1}x \in E$

•
$$N(S) \subseteq \{v_i : v_{i+1} \in S \text{ or } v_{i-1} \in S\}$$

- $\blacktriangleright |N(S)| = 2|S|$
- S stable in G and so $c(G[V \setminus N(S)]) \ge |S| + 1$
- $\blacktriangleright \ G \text{ is } 2\text{-tough} \Leftrightarrow 2c(G[V \setminus N(S)]) \leq |N(S)|\text{,}$

a contradiction.

Theorem (Hoàng and Robin 2023)

If G is 4-tough and P(4) then G is Hamiltonian.

Theorem (Hoàng and Robin 2023)

If G is 4-tough and P(4) then G is Hamiltonian.

► Take the 3-closure of G

Theorem (Hoàng and Robin 2023)

If G is 4-tough and P(4) then G is Hamiltonian.

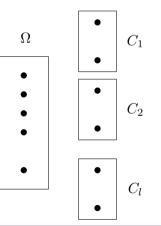
- Take the 3-closure of G
- ► $\exists \Omega$ a universal clique of size at least $\frac{n}{2} 4$.

Theorem (Hoàng and Robin 2023)

If G is 4-tough and P(4) then G is Hamiltonian.

Take the 3-closure of G
 ∃Ω a universal clique of size at least n/2 - 4.

$$\blacktriangleright \ c(G[V \setminus \Omega]) \le \frac{n}{8} - 1$$



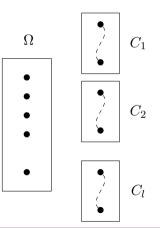
Theorem (Hoàng and Robin 2023)

If G is 4-tough and P(4) then G is Hamiltonian.

Take the 3-closure of G
 ∃Ω a universal clique of size at least n/2 − 4.

$$\blacktriangleright \ c(G[V \setminus \Omega]) \le \frac{n}{8} - 1$$

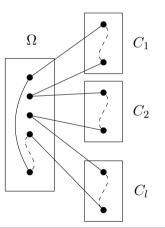
 $\blacktriangleright \ \Delta(G[V \setminus \Omega]) \leq 2$



Theorem (Hoàng and Robin 2023)

If G is 4-tough and P(4) then G is Hamiltonian.

- ► Take the 3-closure of *G*
- ► $\exists \Omega$ a universal clique of size at least $\frac{n}{2} 4$.
- ► $c(G[V \setminus \Omega]) \le \frac{n}{8} 1$
- $\blacktriangleright \ \Delta(G[V \setminus \Omega]) \leq 2$

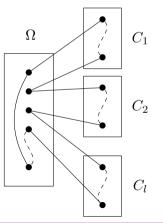


Theorem (Hoàng and Robin 2023)

If G is 4-tough and P(4) then G is Hamiltonian.

- ► Take the 3-closure of *G*
- ► $\exists \Omega$ a universal clique of size at least $\frac{n}{2} 4$.
- ► $c(G[V \setminus \Omega]) \le \frac{n}{8} 1$
- $\blacktriangleright \ \Delta(G[V \setminus \Omega]) \leq 2$

And $t \ge 5$?



Conclusion

Theorem (Hoàng and Robin 2023)

For $t \leq 4$, if G is t-tough and P(t) then G is Hamiltonian

The *t*-closure lemma (Hoàng and *Robin* 2023)

A *t*-tough graph G is Hamiltonian if and only if its $\frac{2t+1}{3}$ -closure G^{*} isHamiltonian. ($t \ge 2$).

Theorem (Hoàng and Robin 2023)

For $t \leq 4$, if G is t-tough and P(t) then G is Hamiltonian

The *t*-closure lemma (Hoàng and *Robin* 2023)

A *t*-tough graph G is Hamiltonian if and only if its $\frac{2t+1}{3}$ -closure G^{*} is Hamiltonian. ($t \ge 2$).

Thank you !