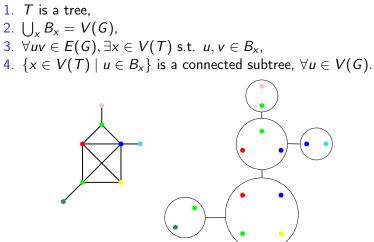
The Grid-Minor Theorem revisited

Vida Dujmović Robert Hickingbotham Jędrzej Hodor Gwenaël Joret Hoang La Piotr Micek Pat Morin <u>Clément Rambaud</u> David R. Wood

Journées Graphes et Algorithmes 2023

Treewidth

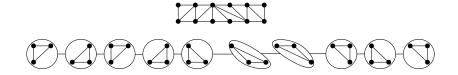
Tree-decomposition: $(T, (B_x | x \in V(T)))$ such that



width = $\max |B_x| - 1$. **Treewidth:** $\operatorname{tw}(G) = \min$ width of a tree-decomposition of *G*.

Pathwidth and treedepth

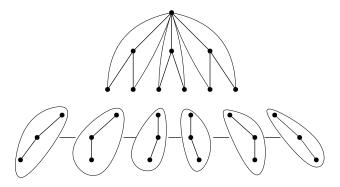
Pathwidth: pw(G) = minimum width of a*path*-decomposition.



Pathwidth and treedepth

Pathwidth: pw(G) = minimum width of a*path*-decomposition.

Treedepth: td(G) = minimum depth of a forest whose completion contains G.



 $\operatorname{tw}(G) \leqslant \operatorname{pw}(G) \leqslant \operatorname{td}(G) - 1$

Minor

Definition

H is a minor of G if H can be obtained from G by successive

- 1. vertex deletions
- 2. edge deletions
- 3. edge contractions.

Minor

Definition

H is a minor of G if H can be obtained from G by successive

- 1. vertex deletions
- 2. edge deletions
- 3. edge contractions.

Observation: $\mathrm{td}, \mathrm{pw}, \mathrm{tw}$ are monotone for the minor relation

Minor

Definition

H is a minor of G if H can be obtained from G by successive

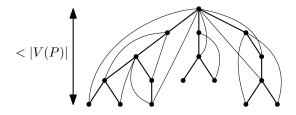
- 1. vertex deletions
- 2. edge deletions
- 3. edge contractions.

Observation: td, pw, tw are monotone for the minor relation **Question:** for which X, X-minor-free graphs have bounded td? pw? tw?

Proposition (Nešetřil and Ossona de Mendez, 2005)

For every **path** P, $\exists f(P)$ such that every P-minor-free graph G has $td(G) \leq f(P)$.

Proof: consider a DFS tree



Proposition (Nešetřil and Ossona de Mendez, 2005)

For every **path** P, $\exists f(P)$ such that every P-minor-free graph G has $td(G) \leq f(P)$.

Theorem (Robertson and Seymour, 1983)

For every tree T, $\exists f(T)$ such that every T-minor-free graph G has $pw(G) \leq f(T)$.

Proposition (Nešetřil and Ossona de Mendez, 2005)

For every **path** P, $\exists f(P)$ such that every P-minor-free graph G has $td(G) \leq f(P)$.

Theorem (Robertson and Seymour, 1983)

For every tree T, $\exists f(T)$ such that every T-minor-free graph G has $pw(G) \leq f(T)$.

Grid-Minor Theorem (Robertson and Seymour, 1986) For every planar graph X, $\exists f(X)$ such that every X-minor-free graph G has $tw(G) \leq f(X)$.

Proposition (Nešetřil and Ossona de Mendez, 2005)

For every path P, $\exists f(P)$ such that every P-minor-free graph G has $td(G) \leq f(P)$.

Theorem (Robertson and Seymour, 1983)

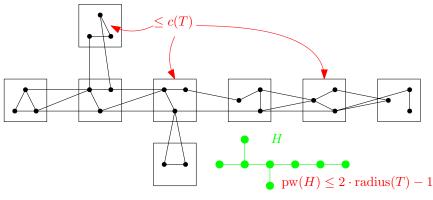
For every tree T, $\exists f(T)$ such that every T-minor-free graph G has $pw(G) \leq f(T)$.

Grid-Minor Theorem (Robertson and Seymour, 1986) For every planar graph X, $\exists f(X)$ such that every X-minor-free graph G has $tw(G) \leq f(X)$.

Remark: $K_{|V(X)|-1}$ is X-minor-free so $f(X) \ge |V(X)| - 2$. $\hookrightarrow \max\{\operatorname{tw}(G) \mid G X$ -minor-free} is tied to |V(X)|.

Theorem (Dujmović, Hickingbotham, Joret, Micek, Morin, Wood, 2023) For every tree T, $\exists c(T)$ such that for every T-minor-free graph G, $G \subseteq H \boxtimes K_{c(T)}$ where $pw(H) \leq 2 \operatorname{radius}(T) - 1$.

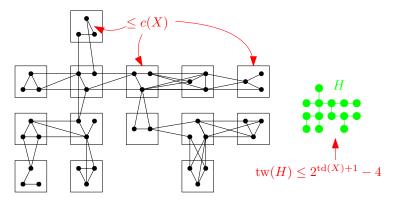
Moreover, radius(T) is the right parameter.



Theorem (DHHJLMMRW, 2023)

For every **planar** X, $\exists c(X)$ such that for every X-minor-free graph G, $G \subseteq H \boxtimes K_{c(X)}$ where $tw(H) \leq 2^{td(X)+1} - 4$.

Moreover, td(X) is the right parameter.



Theorem (DHHJLMMRW, 2023)

For every **planar** X, $\exists c(X)$ such that for every X-minor-free graph G, $G \subseteq H \boxtimes K_{c(X)}$ where $\operatorname{tw}(H) \leq 2^{\operatorname{td}(X)+1} - 4$.

Moreover, td(X) is the right parameter.

Remark: this implies RS's Grid-Minor Theorem since $tw(G) \leq tw(H \boxtimes K_{c(X)})$ $\leq (tw(H) + 1)c(X) - 1$ $\leq 2^{td(X)+1}c(X) =: f(X).$

Theorem (DHHJLMMRW, 2023)

For every **planar** X, $\exists c(X)$ such that for every X-minor-free graph G, $G \subseteq H \boxtimes K_{c(X)}$ where $\operatorname{tw}(H) \leq 2^{\operatorname{td}(X)+1} - 4$.

Moreover, td(X) is the right parameter.

Remark: this implies RS's Grid-Minor Theorem since $tw(G) \leq tw(H \boxtimes K_{c(X)})$ $\leq (tw(H) + 1)c(X) - 1$ $\leq 2^{td(X)+1}c(X) =: f(X).$

Disclaimer: we use the Grid-Minor Theorem in the proof.

Product structure for graphs of bounded treewidth Theorem (DHHJLMM<u>R</u>W, 2023)

For every X, for every X-minor-free G with $\operatorname{tw}(G) < t$, $G \subseteq H \boxtimes K_{c(X) \cdot t}$ where $\operatorname{tw}(H) \leq 2^{\operatorname{td}(X)+1} - 4$.

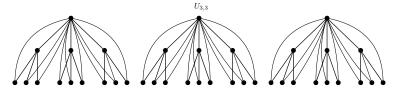
Together with the Grid-Minor Theorem (RS, 86), this implies the main result.

Product structure for graphs of bounded treewidth Theorem (DHHJLMMRW, 2023)

For every X, for every X-minor-free G with $\operatorname{tw}(G) < t$, $G \subseteq H \boxtimes K_{c(X) \cdot t}$ where $\operatorname{tw}(H) \leq 2^{\operatorname{td}(X)+1} - 4$.

Together with the Grid-Minor Theorem (RS, 86), this implies the main result.

 $U_{h,d}$ = completion of the complete *d*-ary forest of depth *h*



Theorem (DHHJLMM<u>R</u>W, 2023)

For every $U_{h,d}$ -minor-free G with tw(G) < t, $G \subseteq H \boxtimes K_{c(h,d) \cdot t}$ where $tw(H) \leq 2^{h+1} - 4$.

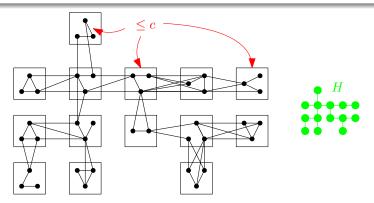
Factorization and partition

Observation

 $G \subseteq H \boxtimes K_c$ if and only if there is a partition \mathcal{P} of V(G) such that

 $\blacktriangleright |P| \leqslant c \text{ for all } P \in \mathcal{P},$

► $G/\mathcal{P} \subseteq H$.



Factorization and partition

Observation

 $G \subseteq H \boxtimes K_c$ if and only if there is a partition \mathcal{P} of V(G) such that

- ▶ $|P| \leq c$ for all $P \in \mathcal{P}$,
- $G/\mathcal{P} \subseteq H$.

Reformulation:

Theorem (DHHJLMMRW, 2023)

For every $U_{h,d}$ -minor-free G with tw(G) < t, there is a partition \mathcal{P} of V(G) such that

- ▶ $|P| \leq c(h, d) \cdot t$ for every $P \in \mathcal{P}$,
- ▶ $\operatorname{tw}(G/\mathcal{P}) \leq 2^{h+1} 4.$

Important tool: attached models

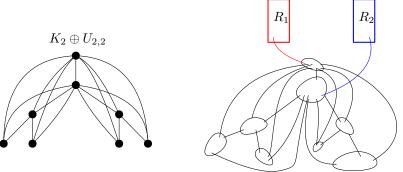
Models:

G contains a model of $H \Leftrightarrow H$ minor of G

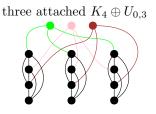
Important tool: attached models

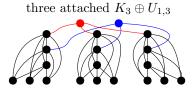
Models:

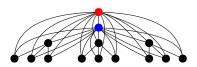
G contains a model of $H \Leftrightarrow H$ minor of G (R_1, \ldots, R_k) -attached model of $K_k \oplus G$



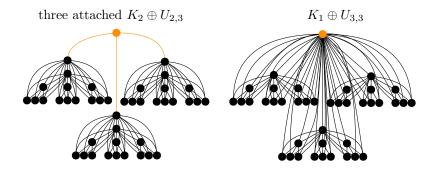
Proof sketch: building $U_{h,d}$ minors







Proof sketch: building $U_{h,d}$ minors



Proof sketch: main induction

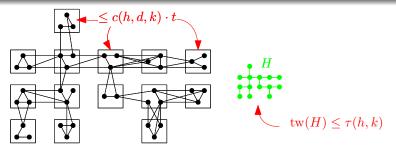
We prove by induction on h the following

Property

For every $K_k \oplus U_{h,d}$ -minor-free graph G with tw(G) < t, there is a partition \mathcal{P} such that

$$|P| \leqslant c(h, d, k) \cdot t, \forall P \in \mathcal{P},$$

• $\operatorname{tw}(G/\mathcal{P}) \leq \tau(h,k).$



Proof sketch: main induction

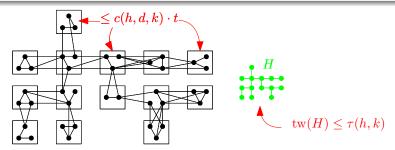
We prove by induction on h the following

Property

For every $K_k \oplus U_{h,d}$ -minor-free graph G with tw(G) < t, there is a partition \mathcal{P} such that

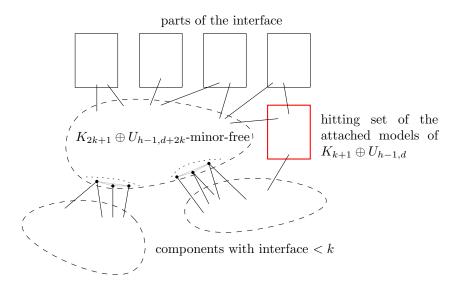
$$|P| \leqslant c(h, d, k) \cdot t, \forall P \in \mathcal{P},$$

• $\operatorname{tw}(G/\mathcal{P}) \leq \tau(h,k).$



Base case: about K_k -minor-free graphs. Proved by Illingworth, Scott, Wood, 2022.

Proof sketch: main induction G is $K_k \oplus U_{h,d}$ -minor-free



Some other results using the same method

Excluding an apex:

Theorem (DHHJLMMRW, 2023)

For every **apex** graph X, for every X-minor-free graph G, $G \subseteq H \boxtimes K_{c(X)} \boxtimes P$ where P is a path and $tw(H) \leq 2^{td(X)+1} - 1$.

Some other results using the same method

Excluding an apex:

Theorem (DHHJLMMRW, 2023)

For every **apex** graph X, for every X-minor-free graph G, $G \subseteq H \boxtimes K_{c(X)} \boxtimes P$ where P is a path and $tw(H) \leq 2^{td(X)+1} - 1$.

Weak coloring numbers:

Theorem (DHHJLMMRW, 2023)

For every X, for every X-minor-free graph G,

$$\operatorname{wcol}_r(G) = \mathcal{O}_X\left(r^{2^{\operatorname{td}(X)+1}-3}\right).$$

Some other results using the same method

Excluding an apex:

Theorem (DHHJLMMRW, 2023)

For every **apex** graph X, for every X-minor-free graph G, $G \subseteq H \boxtimes K_{c(X)} \boxtimes P$ where P is a path and $tw(H) \leq 2^{td(X)+1} - 1$.

Weak coloring numbers:

Theorem (DHHJLMMRW, 2023)

For every X, for every X-minor-free graph G,

$$\operatorname{wcol}_r(G) = \mathcal{O}_X\left(r^{2^{\operatorname{td}(X)+1}-3}\right)$$

Thank you!