

MINOR-UNIVERSAL GRAPH FOR GRAPHS ON SURFACE

Claire HILAIRE

with Cyril GAVOILLE

Claire HILAIRE

Introduction	Results	Surfaces	Proof	Conclusion
●○	0000	00	0000	o

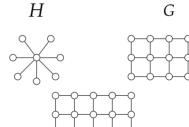
G

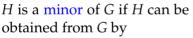
H is a minor of *G* if *H* can be obtained from *G* by

- taking a subgraph
- contracting edges

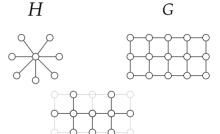
H is a minor of G if H can be obtained from G by

- taking a subgraph
- contracting edges



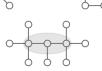


- taking a subgraph
- contracting edges



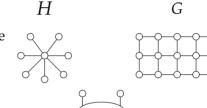
H is a minor of G if H can be obtained from G by

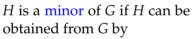
- taking a subgraph
- contracting edges



H is a minor of G if H can be obtained from G by

- taking a subgraph
- contracting edges

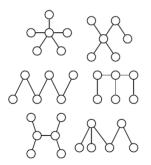




- taking a subgraph
- contracting edges

Introduction	Results	Surfaces	Proof	Conclusion
O	0000	00	0000	o

Minor-universal graph Let \mathcal{F} be a family of finite graphs. *U* is **minor-universal** for \mathcal{F} if for every $G \in \mathcal{F}$, *G* is a minor of *U*.

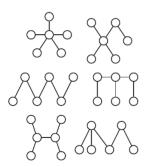


6-vertex trees

Claire HILAIRE

Introduction	Results	Surfaces	Proof	Conclusion
	0000	00	0000	0

Minor-universal graph Let \mathcal{F} be a family of finite graphs. *U* is **minor-universal** for \mathcal{F} if for every $G \in \mathcal{F}$, *G* is a minor of *U*.



6-vertex trees

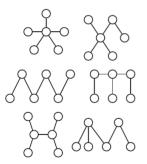
Claire HILAIRE

Introduction ○●	Results 0000	Surfaces 00	Proof 0000	Conclusion 0

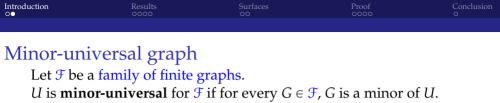
Minor-universal graph

Let \mathcal{F} be a family of finite graphs.

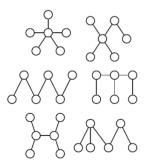
- *U* is **minor-universal** for \mathfrak{F} if for every $G \in \mathfrak{F}$, *G* is a minor of *U*.
- \rightarrow What is the order of a smallest *U* given a certain property?

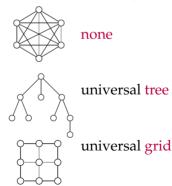


6-vertex trees



 \rightarrow What is the order of a smallest *U* given a certain property?





6-vertex trees

Introduction	Results	Surfaces	Proof	Conclusion
00	●000	00	0000	o

Minor-universal graph

What is the order of a smallest minor-universal for the *n*-vertex graphs of a given family such that the graph is in the family?

Introduction 00	Results ●000	Surfaces 00	Proof 0000	Conclusion o	
Minor-universal graph					

What is the order of a smallest minor-universal for the *n*-vertex graphs of a given family such that the graph is in the family?

• Order of a *tree* minor-universal for the *n*-vertex trees:

Introduction 00	Results ●000	Surfaces 00	Proof 0000	Conclusion o
	e order of a sma	llest minor-unive uch that the grap		

- Order of a *tree* minor-universal for the *n*-vertex trees:
- $\rightarrow \Omega(n^{1.724...})$ and $O(n^{1.895...})$

[Bod03,GKŁ+18]

Introduction 00	Results ●000	Surfaces 00	Proof 0000	Conclusion o
Minor-uni	versal graph			

MINOI-UNIVEISAI graph

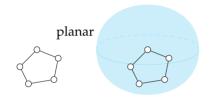
What is the order of a smallest minor-universal for the *n*-vertex graphs of a given family such that the graph is in the family?

- Order of a tree minor-universal for the *n*-vertex trees:
- $\rightarrow \Omega(n^{1.724...})$ and $\Omega(n^{1.895...})$ [Bod03,GKŁ+18]
 - Order of a *planar* graph minor-universal for the planar *n*-vertex graphs:
- $\rightarrow O(n^2)$ with the $2n \times 2n$ -grid

[RST94]

Introduction	Results	Surfaces	Proof	Conclusion
00	○●○○	00	0000	o

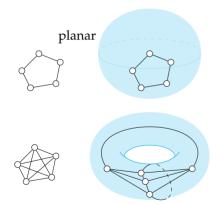
Graphs on surfaces



Claire HILAIRE

Introduction	Results	Surfaces	Proof	Conclusion
00	0000	00	0000	O

Graphs on surfaces



Claire HILAIRE

Introduction 00	Results ○●○○	Surfaces 00	Proof 0000	Conclusion o
Graphs on su				
planar				

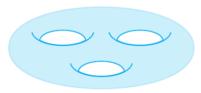
Claire HILAIRE

Introduction	Results	Surfaces	Proof	Conclusion
00	00●0	00	0000	o

Classification of surfaces

Every connected surface without boundary is homeomorphic to either:

- An **orientable** surface of Euler genus $2g \ge 0$:
- A non-orientable surface of Euler genus g ≥ 0:



here g = 3

Claire HILAIRE

Introduction	Results	Surfaces	Proof	Conclusion
00	000●	00	0000	0

Minor-universal graph

What is the order of a smallest minor-universal for the *n*-vertex graphs of a given family such that the graph is in the family?

- Order of a *tree* minor-universal for the *n*-vertex trees:
- → $\Omega(n^{1.724...})$ and $O(n^{1.895...})$ [Bod03,GKŁ+18]
 - Order of a *planar* graph minor-universal for the planar *n*-vertex graphs:
- $\rightarrow O(n^2)$ with the $2n \times 2n$ -grid

[RST94]

Minor-universal graph

What is the order of a smallest minor-universal for the *n*-vertex graphs of a given family such that the graph is in the family?

- Order of a *tree* minor-universal for the *n*-vertex trees:
- → $\Omega(n^{1.724...})$ and $O(n^{1.895...})$ [Bod03,GKŁ+18]
 - Order of a *planar* graph minor-universal for the planar *n*-vertex graphs:
- $\rightarrow O(n^2)$ with the $2n \times 2n$ -grid

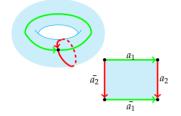
[RST94]

Gavoille and H. (2023+)

For every *n* and every surface Σ of Euler genus $g \ge 1$, there is a graph embedded on Σ with $O(g^2(n+g)^2)$ vertices minor-universal for the *n*-vertex graphs embeddable on Σ .

Introduction	Results	Surfaces	Proof	Conclusion
00	0000	●0	0000	o

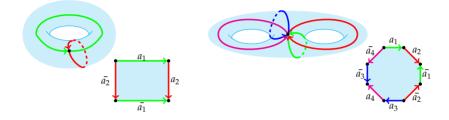
Polygonal schema for surfaces



Claire HILAIRE

Introduction	Results	Surfaces	Proof	Conclusion
00	0000	●0	0000	o

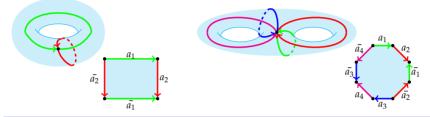
Polygonal schema for surfaces



Claire HILAIRE

Introduction	Results	Surfaces	Proof	Conclusion
00	0000	●0	0000	0

Polygonal schema for surfaces



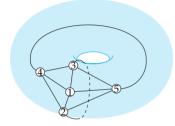
Classification Theorem

Every compact, connected surface of Euler genus $g \ge 1$ is homeomorphic to a polygonal surface given by one of the following **canonical signatures** σ :

- Orientable: $a_1 a_2 \overline{a_1} \overline{a_2} \dots a_{g-1} a_g \overline{a_{g-1}} \overline{a_g}$
- **Non-orientable:** $a_1a_1 \dots a_ga_g$

ntroduction Results **Surfaces** Proof Conclusion

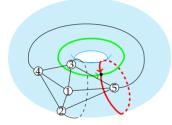
Polygonal embedding for graphs



Claire HILAIRE

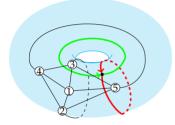
roduction Results Surfaces Proof Conclusion

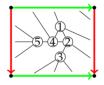
Polygonal embedding for graphs



Claire HILAIRE

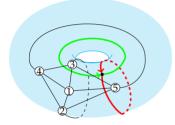
Polygonal embedding for graphs

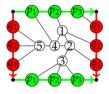




Claire HILAIRE

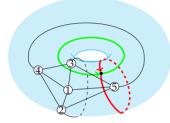
Polygonal embedding for graphs

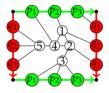




Claire HILAIRE

Polygonal embedding for graphs

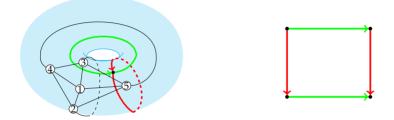




G has a **polygonal embedding** characterized by:

Claire HILAIRE

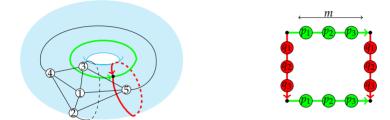
Polygonal embedding for graphs



G has a **polygonal embedding** characterized by: →,→: sides of the |σ|-gon respecting the signature σ.

Claire HILAIRE

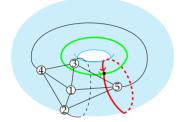
Polygonal embedding for graphs

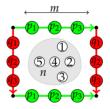


G has a **polygonal embedding** characterized by:

- ► \rightarrow , \rightarrow : sides of the $|\sigma|$ -gon respecting the signature σ .
- at most *m* external vertices on each side $(p_1, p_2, p_3, q_1, q_2, q_3)$.

Polygonal embedding for graphs

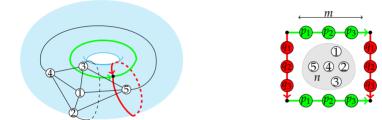




G has a **polygonal embedding** characterized by:

- \rightarrow , \rightarrow : sides of the $|\sigma|$ -gon respecting the signature σ .
- at most *m* external vertices on each side $(p_1, p_2, p_3, q_1, q_2, q_3)$.
- at most *n* internal vertices (1,2,3,4,5).

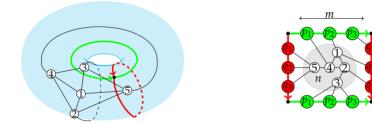
Polygonal embedding for graphs



G has a **polygonal embedding** of type $P_{\sigma}(m, n)$:

- ► \rightarrow , \rightarrow : sides of the $|\sigma|$ -gon respecting the signature σ .
- at most *m* external vertices on each side $(p_1, p_2, p_3, q_1, q_2, q_3)$.
- at most *n* internal vertices (1,2,3,4,5).

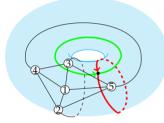
Polygonal embedding for graphs

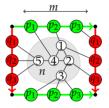


G has a **polygonal embedding** of type $P_{\sigma}(m, n)$:

- ► \rightarrow , \rightarrow : sides of the $|\sigma|$ -gon respecting the signature σ .
- at most *m* external vertices on each side $(p_1, p_2, p_3, q_1, q_2, q_3)$.
- at most *n* internal vertices (1,2,3,4,5).

Polygonal embedding for graphs





depends only on *g* and orientability

G has a **polygonal embedding** of type $P_{\sigma}(m, n)$:

- ► →,→: sides of the $|\sigma|$ -gon respecting the signature σ
- at most m external vertices on each side $(p_1, p_2, p_3, q_1, q_2, q_3)$.
- at most *n* internal vertices (1,2,3,4,5).

 $\sim O(n+g)$ [LPVV01,FHdM22]

Claire HILAIRE

Introduction	Results	Surfaces	Proof	Conclusion
00	0000	00	●000	o

Sketch of the proof

Gavoille and H. (2023+)

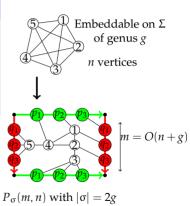
For every *n* and every surface Σ of Euler genus $g \ge 1$, there is a graph embedded on Σ with $O(g^2(n+g)^2)$ vertices minor-universal for the *n*-vertex graphs embeddable on Σ .

Introduction	Results	Surfaces	Proof	Conclusion
00	0000	00	●000	o

Sketch of the proof

Gavoille and H. (2023+)

For every *n* and every surface Σ of Euler genus $g \ge 1$, there is a graph embedded on Σ with $O(g^2(n+g)^2)$ vertices minor-universal for the *n*-vertex graphs embeddable on Σ .



Claire HILAIRE

Introduction	Results	Surfaces	Proof	Conclusion
00	0000	00	●000	o

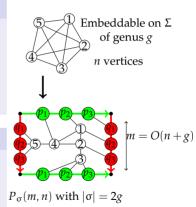
Sketch of the proof

Gavoille and H. (2023+)

For every *n* and every surface Σ of Euler genus $g \ge 1$, there is a graph embedded on Σ with $O(g^2(n+g)^2)$ vertices minor-universal for the *n*-vertex graphs embeddable on Σ .

Technical theorem.

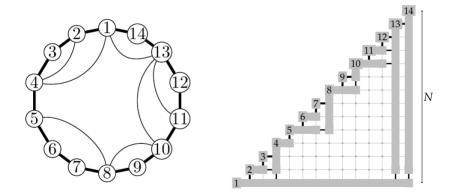
 $\forall \sigma, m, n$, there is a graph with a polygonal embedding $P_{\sigma}(m + 2n, |\sigma|^2(m + 2n)^2)$, minor-universal for the graphs with a polygonal embedding $P_{\sigma}(m, n)$.



Claire HILAIRE

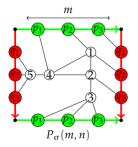
Introduction	Results	Surfaces	Proof	Conclusion
00	0000	00	0000	o

Planar graphs: main step



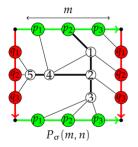
Claire HILAIRE

Introduction	Results	Surfaces	Proof	Conclusion
00	0000	00	0000	O



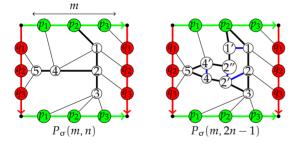
Claire HILAIRE

Introduction	Results	Surfaces	Proof	Conclusion
00	0000	00	0000	o



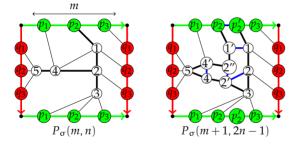
Claire HILAIRE

Introduction	Results	Surfaces	Proof	Conclusion
00	0000	00	0000	o



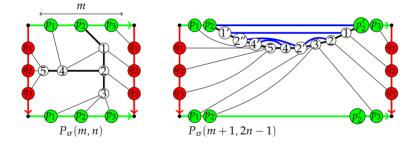
Claire HILAIRE

Introduction	Results	Surfaces	Proof	Conclusion
00	0000	00	0000	o



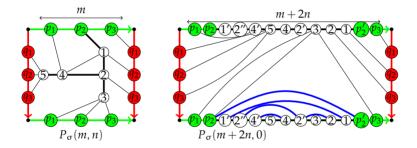
Claire HILAIRE

Introduction	Results	Surfaces	Proof	Conclusion
00	0000	00	0000	o



Claire HILAIRE

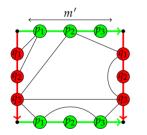
Introduction Results Surfaces	Proof	Conclusion
00 0000 00	0000	0

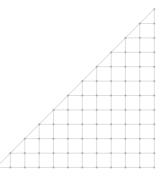


Claire HILAIRE

Introduction	Results	Surfaces	Proof	Conclusion
00	0000	00	000	o

step 2/2: grid-like minor-universal graph

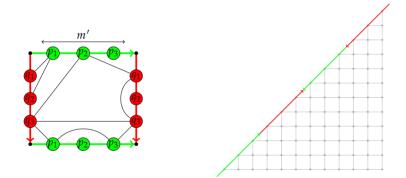




Claire HILAIRE

Introduction	Results	Surfaces	Proof	Conclusion
00	0000	00	000	o

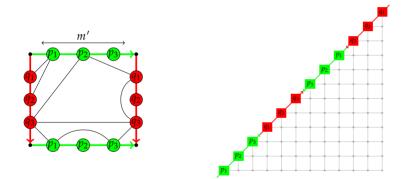
step 2/2: grid-like minor-universal graph



Claire HILAIRE

Introduction	Results	Surfaces	Proof	Conclusion
00	0000	00	000	o

step 2/2: grid-like minor-universal graph



Claire HILAIRE

Introduction 00	Results 0000	Surfaces 00	Proof 0000	Conclusion
Conclusion				

• $\Omega(n^{1.724...})$ and $O(n^{1.895...})$ for trees; [Bod03,GKŁ+18]

Claire HILAIRE

Introduction 00	Results 0000	Surfaces 00	Proof 0000	Conclusion
Conclusion	n			

- $\Omega(n^{1.724...})$ and $O(n^{1.895...})$ for trees; [Bod03,GKL+18]
- $O(n^2)$ minor-universal graph for planar graphs; [RST94]

Introduction 00	Results 0000	Surfaces 00	Proof 0000	Conclusion
Conclusion				

- $\Omega(n^{1.724...})$ and $O(n^{1.895...})$ for trees; [Bod03,GKL+18]
- $O(n^2)$ minor-universal graph for planar graphs; [RST94]
- $O(g^2(n+g)^2)$ minor-universal graph for graphs on surfaces;

Introduction 00	Results 0000	Surfaces 00	Proof 0000	Conclusion
Conclusion				

- $\Omega(n^{1.724...})$ and $O(n^{1.895...})$ for trees; [Bod03,GKL+18]
- $O(n^2)$ minor-universal graph for planar graphs; [RST94]
- $O(g^2(n+g)^2)$ minor-universal graph for graphs on surfaces;
- Subquadratic lower bound on minor-universal for planar?

Introduction 00	Results 0000	Surfaces 00	Proof 0000	Conclusion
Conclusion				

- $\Omega(n^{1.724...})$ and $O(n^{1.895...})$ for trees; [Bod03,GKL+18]
- $O(n^2)$ minor-universal graph for planar graphs; [RST94]
- $O(g^2(n+g)^2)$ minor-universal graph for graphs on surfaces;
- Subquadratic lower bound on minor-universal for planar?
- Extension to *H*-minor-free graphs?

Introduction 00	Results 0000	Surfaces 00	Proof 0000	Conclusion
Conclusion				

- $\Omega(n^{1.724...})$ and $O(n^{1.895...})$ for trees; [Bod03,GKL+18]
- $O(n^2)$ minor-universal graph for planar graphs; [RST94]
- $O(g^2(n+g)^2)$ minor-universal graph for graphs on surfaces;
- Subquadratic lower bound on minor-universal for planar?
- Extension to H-minor-free graphs? in progress! [ABGHW]

Introduction 00	Results 0000	Surfaces 00	Proof 0000	Conclusion
Conclusion				

- $\Omega(n^{1.724...})$ and $O(n^{1.895...})$ for trees; [Bod03,GKL+18]
- $O(n^2)$ minor-universal graph for planar graphs; [RST94]
- $O(g^2(n+g)^2)$ minor-universal graph for graphs on surfaces;
- Subquadratic lower bound on minor-universal for planar?
- Extension to H-minor-free graphs? in progress! [ABGHW]

Thank you!