Table des matières

C. T. Hoàng et C. Robin : Tough graphs and Hamiltonian degree conditions 2
Tough graphs and Hamiltonian degree conditions

Chinh T. Hoàng, Wilfried Laurier University, choang@wlu.ca
Cléophée Robin, Greyc Caen, cleophee.robin@unicaen.fr

A graph G is Hamiltonian if there exists a cycle in G containing all vertices of G. A graph G is t-tough if, for all subsets of vertices S, the number of connected components in $G \setminus S$ is at most $|S|/t$.

In 1995, Hoàng conjectured the following.

Conjecture 1 (Hoàng ([1])) Let G be a graph with degree sequence d_1, d_2, \ldots, d_n and let t be a positive integer.

If G is t-tough and if, for all i such that $t \leq i < n/2$, $d_i \leq i d_{n-i+t} \leq n-i$ then G is Hamiltonian.

He proved that conjecture is true for $t \leq 3$. We proved that it is true for $t \leq 6$. To do this, we extended into a version for t-tough graphs, the closure lemma due to Bondy and Chvátal.

Références