Table des matières

<table>
<thead>
<tr>
<th>F. Fioravantes, D. Knop, J.M. Křišťan, N. Melissinos, M. Opler : Exact Algorithms and Lowerbounds for Multiagent Pathfinding</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F. Fioravantes, D. Knop, J.M. Křišťan, N. Melissinos, M. Opler : Exact Algorithms and Lowerbounds for Multiagent Pathfinding</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>
Exact Algorithms and Lowerbounds for Multiagent Pathfinding

Foivos Fioravantes, Department of Theoretical Computer Science, FIT, CTU, Prague, Czech Republic
Dušan Knop, Department of Theoretical Computer Science, FIT, CTU, Prague, Czech Republic
Jan Matyáš Kríšťan, Department of Theoretical Computer Science, FIT, CTU, Prague, Czech Republic
Nikolaos Melissinos, Department of Theoretical Computer Science, FIT, CTU, Prague, Czech Republic
Michal Opler, Department of Theoretical Computer Science, FIT, CTU, Prague, Czech Republic

In the Multiagent Path Finding problem, we focus on efficiently finding non-colliding paths for a set of k agents on a given graph G, where each agent seeks a path from its source vertex to its target. An important measure of the quality of the solution is the length of the proposed schedule ℓ, that is, the length of a longest path (including the waiting time). In this work, we propose a systematic study under the parameterized complexity framework.

We show that the Multiagent Path Finding problem is $W[1]$-hard with respect to k (even if k is combined with the maximum degree of the input graph). The problem remains NP-hard in planar graphs even if the maximum degree and the makespan ℓ are fixed constants. We also show that the problem remains NP-hard even when the input graph is a tree of maximum degree five. Both of these proofs serve as improvements of the current state of the art concerning the intractability of this problem [1]. On the positive side, we show an FPT algorithm for $k + \ell$. As we delve further, the structure of G comes into play. We give an FPT algorithm for k plus the diameter of the graph G. Finally, we show that the problem is $W[1]$-hard for cliquewidth of G plus ℓ while it is FPT for treewidth of G plus ℓ.

Références

Exact Algorithms and Lowerbounds for Multiagent Pathfinding

Foivos Fioravantes, Department of Theoretical Computer Science, FIT, CTU, Prague, Czech Republic
Dušan Knop, Department of Theoretical Computer Science, FIT, CTU, Prague, Czech Republic
Jan Matyáš Kríšťan, Department of Theoretical Computer Science, FIT, CTU, Prague, Czech Republic
Nikolaos Melissinos, Department of Theoretical Computer Science, FIT, CTU, Prague, Czech Republic
Michal Opler, Department of Theoretical Computer Science, FIT, CTU, Prague, Czech Republic

In the MULTIAGENT PATH FINDING problem, we focus on efficiently finding non-colliding paths for a set of k agents on a given graph G, where each agent seeks a path from its source vertex to its target. An important measure of the quality of the solution is the length of the proposed schedule ℓ, that is, the length of a longest path (including the waiting time). In this work, we propose a systematic study under the parameterized complexity framework.

We show that the MULTIAGENT PATH FINDING problem is $W[1]$-hard with respect to k (even if k is combined with the maximum degree of the input graph). The problem remains NP-hard in planar graphs even if the maximum degree and the makespan ℓ are fixed constants. We also show that the problem remains NP-hard even when the input graph is a tree of maximum degree five. Both of these proofs serve as improvements of the current state of the art concerning the intractability of this problem [1]. On the positive side, we show an FPT algorithm for $k + \ell$. As we delve further, the structure of G comes into play. We give an FPT algorithm for parameter k plus the diameter of the graph G. Finally, we show that the problem is $W[1]$-hard for cliquewidth of G plus ℓ while it is FPT for treewidth of G plus ℓ.

Références